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Abstract: This paper presents an object-oriented approach for creating multi-region non-manifold models with 
NURBS. The main motivation is that the geometry and shape of realistic engineering objects are intrinsically 
complex, usually composed by several materials and regions. Therefore, automatic and/or adaptive meshing al-
gorithms have become revealed themselves quite useful to increase the reliability of the procedures of a FEM 
numerical analysis. The present approach is concerned with two aspects of 3D FEM simulation: geometric 
modeling, with automatic multi-region detection, and support to automatic finite element mesh generation. The 
final objective is to use geometric models directly in numerical applications. 

 
 
1 Introduction 
 

Finite element analysis [1,2] and geometric modeling of 
solids [3,7] are important items in the process of simulat-
ing engineering problems (see, for example, Figure 1), 
especially when an analytic solution is unknown or is dif-
ficult to obtain. 
 

 
Figure 1: A geometric model and its finite element mesh. 

 
Generally, the Finite Element Method (FEM) is 

based on a numerical model obtained from the refinement 
or “discretization” of the problem domain, combined with 
additional information necessary for the complete defini-
tion of the physical problem. Such information consists of 
a set of parameters, called simulation attributes [4,5,6]. 
The discretization, denominated finite element mesh, con-
sists of a group of nodes or vertices (points with coordi-
nates) and a group of cells, called finite elements, with a 
predefined topology (triangular, quadrilateral, or tetrahe-
dral, for example). The elements are defined by a list of 
node connectivities (sequence of vertices that belong to 
each element). A finite element model is the association 
of a finite element mesh with a set of simulation attrib-
utes. 

One important aspect of 3D FEM simulation is mesh 
generation. This is an area that has been active since the 
creation of the method. In general, the mesh generation 
process demands time and is quite tiresome, apart from 
demanding a certain degree of experience from the re-
sponsible professional for this task. In this context, auto-
matic and/or adaptive meshing algorithms have become 
revealed themselves quite useful to increase the reliability 
of the procedures of a FEM numerical analysis [1]. 

Another important aspect in three-dimensional finite 
element simulation is the creation of the geometric model. 
There are several issues involved in this task, ranging 
from user-interface strategies to data representation 
schemes. To accomplish this, it is necessary to use special 
programs, called modelers, which can digitally reproduce 
common geometric forms of the target objects [7]. The 
geometry and shape of realistic engineering objects are 
intrinsically complex, usually composed by several mate-
rials and regions. 

The modeling methodology discussed in this paper is 
concerned with two aspects of 3D FEM simulation: 
•  geometric modeling, with automatic multi-region 

detection, and 
•  support to automatic finite element mesh generation. 

This methodology was implemented in an existing 
finite element modeler called MG. This is a finite element 
pre-processor that was originally devised for the genera-
tion of surface (shell) finite element models [8]. Later on, 
the system was extended to also consider solid meshes 
[9,10]. MG’s modeling capabilities address two important 
issues in 3D finite element modeling. The first is related 
to user-interface and interactive graphics procedures to 



  

generate surface meshes [11], and the second is the inter-
section of surface finite element meshes, such as the ones 
shown in Figure 2 [12]. 
 

 
Figure 2: Intersection of surface meshes. 

 
The original version of MG is powerful in model rep-

resentation, and has a relatively simple and efficient inter-
face. However, its data structure was not based on any 
formal geometric modeling concept. The geometric con-
sistency of a model in many situations relies on user in-
tervention. For example, there is no capability to auto-
matically detect when a volume in space is enclosed off 
by a set of surface patches. The user must explicitly indi-
cate this, which may be a hard task in a realistic engineer-
ing model. This capability is particularly important for 
finite element mesh generation, as, sometimes it is desir-
able to have several regions, each one meshed by a differ-
ent algorithm. 

The formalism necessary for modeling capabilities 
that allow automatic recognition of created solid regions 
goes beyond the scope of this paper. The methodology 
adopted here was previously devised by the authors [13], 
and is based on a complete topological representation of a 
space subdivision, called Complete Geometry Complex 
(CGC), which is summarized in the next section. 

This paper describes a class organization, in the con-
text of Object Oriented Programming (OOP), of a new 
version of the MG modeler that, still keeping the simple 
and efficient user-interface characteristics, provides capa-
bilities for automatic region detection with surface 
patches represented by Non-Uniform Rational B-Splines 
(NURBS) [14]. To achieve this, a hybrid approach was 
adopted in which a full CGC representation of the model 
is not maintained all the time. Instead, the previous MG 
data structure [8] was extended so that a CGC model can 
be created at any moment when the user requires region 
detection or surface intersection. 

The new class organization also provides support for 
automatic surface and solid mesh generation. It is not the 
objective here to describe meshing algorithms. It suffices 

to say that surface mesh generation is performed in the 
parametric space of each surface and that the provided 
algorithms in MG are described elsewhere [9,10,12,15]. 
 
2 Complete Geometric Complex Representations 
 

In general, there are two main strategies for the represen-
tation of a three-dimensional geometric model: an implicit 
scheme and an explicit scheme. The most common im-
plicit scheme is Constructive Solid Geometry (CSG) [16], 
in which the target object is reproduced by a set of Boo-
lean operations applied to primitive objects. In the explicit 
scheme, the geometry of an object is defined by a set of 
surface patches, which may be created through an interac-
tive graphics interface. However, the complete definition 
of the solid model requires combinatorial relationships 
among the several surface patches, which will result in the 
definition of the interior region, model boundaries and 
other topological information. This type of solid model 
representation is called Boundary Representation (B-REP) 
[3,7]. 

Traditional CSG and B-REP techniques apply to ob-
jects that decompose space into three parts: interior, exte-
rior, and boundary. This class of objects is referred to as 
manifold objects, because their boundaries are two-
manifold sets in three dimensions [3]. This means that the 
original techniques could not model multi-region objects. 

Many applications in engineering need to model 
multi-region objects or objects that present other non-
manifold features, such as dangling faces or edges. For 
this reason, many works in the literature have proposed 
non-manifold modeling schemes [13,17,18,19,20,21,22, 
23]. 

The generation of a consistent non-manifold B-REP 
model from a set of surface patches is not a simple task 
and may involve surface intersection and region detection. 
Considering the user-interface problems related to this 
task, it is desirable that the creation of a B-REP model 
from a set of surface patches be automated. The ideal en-
vironment for the user would be to create these patches 
with no explicit relationship, except using already created 
geometry information for the generation of a new patch. 
The modeler would automatically generate surface inter-
section curves and topologically link these entities to the 
geometric definition. 

A previous work by the present research group [13] 
proposed a non-manifold approach for modeling multi-
region objects. A general methodology for creating and 
manipulating a spatial subdivision in cells of arbitrary 
shape and geometry was developed. A spatial subdivision 
may be created by means of inserting planar surface 
patches one by one, allowing the insertion of new patches 
in real time. The object resulting from this decomposition 
is classified as Complete Geometric Complex (CGC) be-
cause it is a special case of Geometric Complex [22] that 



  

occupies the entire three-dimensional space (the unlimited 
outer region is also represented in the subdivision). 

Several works have presented methods to represent 
spatial subdivisions. Rossignac and O’Connor [22] ad-
dressed the general problem of representing n-
dimensional objects, possibly with internal structures. 
Some data structures used in non-manifold solid modeling 
[17,18,19,21] represent, in a general way, the adjacency 
relationships of three-dimensional objects not necessarily 
homogeneous in dimension. In the present implementa-
tion, the Radial-Edge data structure (RED), proposed by 
Weiler [20,21] is adopted. 

This data structure is known as Radial-Edge because 
it explicitly stores the list of faces radially ordered around 
an edge (Figure 3). The Radial-Edge data structure was 
conceived for non-manifold modeling and Weiler has 
proved its completeness, which means that any adjacency 
relationship can be extracted from this representation. 
 

 
Figure 3: Uses of topological elements in RED. 

 
In order to describe the topology of a spatial subdivi-

sion, the Radial-Edge representation employs the concept 
of use of a topological element. A use can be seen as the 
occurrence of a topological element in an adjacency rela-
tionship related to an element of higher dimension. Thus, 
the Radial-Edge structure explicitly stores the two uses 
(sides) of a face by the two regions (not necessarily dis-
tinct) that share that face. Each face-use is bounded by 
one or more loop-uses, which are composed by an alter-
nating sequence of edge-uses and vertex-uses (Figure 3). 
Vertex-uses are necessary to store non-manifold condi-
tions at vertices. 

The RED structure is a hierarchical description of a 
spatial subdivision, starting in higher dimension levels 
(regions) and reaching the lower levels (vertices) (Figure 

4). The topological elements are kept in doubly-linked 
circular lists and have pointers to their attributes. 
 

 Model

Region

Shell

Face Use 

Loop Use 

Edge Use 

Vertex Use 

Face 

Loop 

Edge 

Vertex 

Model

Region

Shell

Face Use 

Loop Use 

Edge Use 

Vertex Use 

Face 

Loop 

Edge 

Vertex  
Figure 4: Hierarchy of topological entities in RED. 

 
Topological data structures are complex and should 

not be manipulated directly. Weiler has introduced a set 
of operators that provide a high-level method to access the 
Radial-Edge structure. These operators are divided in two 
groups. The first group has operators that act on faces of a 
spatial subdivision and are analogous to the (two-
manifold) operators presented by Mäntylä [7]. The second 
group has operators that are capable of creating wire-
frames and of adding faces, which are attached to speci-
fied edges or wireframes. These are referred to as non-
manifold operators. Considerations about a minimal set of 
operators can be found in [24]. 

The present CGC modeling is implemented as a li-
brary of OOP classes, which provide a set of high-level 
operators that manipulate a spatial subdivision. These 
operators receive as input geometric information on the 
surface patches that are inserted in the spatial subdivision. 
This geometric information is automatically translated 
into topological information required by Weiler’s non-
manifold and manifold operators. 

The CGC modeling capability is one of the key as-
pects of the finite element modeling scheme proposed in 
this work. However, up to now the implementation of this 
methodology could only treat planar (polygonal) surface 
patches. One of the objectives of this work is to extend 
the methodology to consider curved surface geometries 
using NURBS. 
 
3 Hybrid Modeling Approach 
 

As previously mentioned, the proposed data representa-
tion scheme, which is adopted in the new version of the 
MG modeler, is based on a hybrid approach. The basic 
idea is to have two separate representations of the same 
model. One representation is stored in the modeler’s data 
structure. This is the representation that is actually main-



  

tained in computer memory during the modeling process. 
The modeler’s data structure is also permanently stored in 
disk when a model is saved. The other representation is a 
temporary conversion of the modeler’s data structure into 
a CGC representation. In this conversion the model is 
modified to reflect possible surface intersection and is 
topologically treated to reflect region detection. 

The main advantage of this approach is that it com-
bines the functionality and simplicity of MG with the 
topological power of representation and robustness of 
CGC. There is a two-way communication between the 
two representations, as shown in Figure 5. CGC may be 
seen as a “topological engine” that generates topological 
information, that is consistent with the geometry of a 
model. The topological entities identified by the CGC 
representation are passed back to the MG representation, 
which includes regions that are automatically detected. In 
Figure 5, it can also be observed that the geometric de-
scription of the topological entities is common to both 
representations. This geometric description is stored in a 
separate module based on NURBS representation [25]. 
 

MG representation CGC representation 

NURBS NURBS 
 

Figure 5: General modules in modeling approach. 

 
The three modules shown in Figure 5 are imple-

mented as OOP classes. CGC class organization is de-
scribed in [26] and NURBS class organization is available 
in [25]. MG class organization will be described in the 
next section. 

The basic information passed from the modeler’s 
data structure to the CGC data structure consists of a set 
of surface patches defined by the user through MG’s 
graphics interface. Each surface patch is inserted in the 
CGC representation, which might generate one or more 
topological faces. In instances where the patches only 
intersect each other at the boundaries, each surface patch 
will correspond to a face in CGC. Here, a surface patch is 
represented by its boundary curves and by its NURBS 
geometric description. These parameters are sufficient to 
determine a face in CGC module. 

This module processes the surface patches passed by 
the MG module and generates a consistent topological 
model, which is then converted back to the MG represen-
tation. This conversion is performed, basically, by travers-
ing all regions and faces generated by the CGC module 
and transforming them into entities of the MG representa-
tion. Each face in the CGC representation corresponds to 
a surface patch in the MG representation. Two patches 
may belong to a same geometric surface, in situations 
where an intersecting trimming curve subdivided the ini-

tial patch. Similarly, each edge in the CGC representation 
corresponds to a curve segment in the modeler’s represen-
tation, and these segments may share the same geometric 
curve if they were originated from a curve split. Finally, 
each region in the CGC representation will generate a 
solid in the MG representation. 

In the context of this work, the CGC representation is 
generated only when requested by the MG user. This 
means that consistency between geometry and topology is 
only enforced when desirable. The reason for this is that it 
might be very expensive to maintain this consistency after 
every step of the modeling process. Three-dimensional 
geometric modeling is a complex task that might involve 
a series of trial-and-error steps. The proposed hybrid ap-
proach was conceived focusing specifically on the prob-
lem. The MG representation is relatively simple and con-
sequently provides an efficient manipulation of surfaces. 
It would not be possible to achieve the same degree of 
user-interface efficiency if, at any moment, consistency 
between topology and geometry were enforced after each 
user-interface task. 
 
4 Modeler’s Class Organization 
  

The main data structure of MG was conceived with the 
purpose of supporting both surface (shells) and solid finite 
element modeling. The data structure class organization 
of MG incorporates the concept of geometric and topo-
logical entities. This structure also maintains the adja-
cency relationships among the entities. Figure 6 shows the 
OOP class organization in the MG module. The class dia-
gram shown in this figure, as well as in other figures in 
this paper, follows the OMT (Object Modeling Tech-
nique) nomenclature [27]. 
 

Entity

Point Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Generic Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

Entity

Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

Entity

Point Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

Entity

Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

 
Figure 6: Modeler’s general OOP class organization. 

 
The Entity class is subdivided in two sub-classes. 

The first, Geometry, refers to the geometric entities of the 
model. The other, Topology, represents the entities that 
contain the topological information. 



  

For example, in the MG data structure, a vertex in 
space has a topological version, which is represented by 
an object of the VtxTop class, and a geometric version, 
which is represented by an object of the Point class. A 
VtxTop object contains a list of references to adjacent 
curve segments (Segment objects) and a reference to the 
corresponding Point object. An object of the Point class 
stores the geometric position of a vertex in the 3D Euclid-
ian space and has a reference to the corresponding VtxTop 
object. 

Similarly, a Segment object represents the topology 
of a portion (segment) of a geometric curve. An object of 
this class stores the topological information (pointers to 
adjacent vertices, for example) and a reference to its geo-
metric description (Curve object). Figure 7 illustrates the 
relationship between a curve (geometry) and its two seg-
ments (topology). In this case, curve c1 has a reference to 
its geometric representation (a NURBS object) and a list 
of references to Segment objects that belong to it (s1 and 
s2). These Segment objects contain references to their end 
vertices, (v1,v3) and (v3,v2), respectively, and to curve c1. 
A Curve object must have at least one Segment object. 
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Figure 7: Relationship Curve - Segment. 

 
Another important class in the context of the MG 

data structure is class Patch2d, which represents the to-
pology of a portion of a surface. An object of the Patch2d 
class stores references to its boundary curves and to its 
surface geometric description, which is represented by an 
object of class Surface. A Surface object contains a refer-
ence to its geometric representation, i.e., a pointer to a 
NURBS object, and a list of references to Patch2d objects 
that belong to it. Figure 8 illustrates the relationship be-
tween surface s1 and two corresponding Patch2d objects, 
p1 and p2. Each Patch2d object contains topological in-
formation, which mainly consists of a list of Segment ob-
jects on its boundaries. In addition, a Patch2d object 
stores a surface finite element mesh that is eventually 
generated on it. 
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Figure 8: Relationship Surface - Patch2d. 

An object of the Surface class must have at least one 
Patch2d object. A Surface object also contains geometric 
information related to the process that was used for its 
interactive generation. Currently, a surface may be gener-
ated from boundary curves by bilinear mapping, trilinear 
mapping, or sweep [8]. Therefore, each Surface object 
contains information about its creation method and a list 
of references to its generating curves (curves that were 
used for its creation). 

A Patch2d object also has references to adjacent 
Patch3d objects. An object of the Patch3d class is the 
topological representation of a solid region. A Patch3d 
object has a list of references to Patch2d objects that form 
its boundary and a pointer to the corresponding Solid ob-
ject. In addition, a Patch3d object stores a solid finite 
element mesh that is eventually generated in it. 

The geometric version of the topological Patch3d 
class is the Solid class. A Solid object contains geometric 
information about the method used for its generation. Cur-
rently, there are three methods for solid generation: extru-
sion, sweep, or generic generation [9]. A generic genera-
tion of a solid may be performed explicitly by the user (by 
simply selecting surface patches on the boundary of the 
target solid) or automatically by the CGC representation 
when a solid region is detected. Therefore, each Solid 
object contains information about its creation method and 
a list of references to its generating curves and surfaces 
(curves and surfaces that were used for its creation). 

An important issue addressed by this data representa-
tion scheme it the support for automatic and/or adaptive 
mesh generation. As previously mentioned, finite element 
mesh generation is an area of active research and is being 
treated by the authors elsewhere [9,10,12,15]. One of the 
goals of this research line is the development of a com-
plete system for geometric modeling and 3D finite ele-
ment adaptive simulation. The methodology for adaptive 
mesh generation has been tested in two-dimensions [28], 
and is based on the refinement of each topological entity 
in its own parametric space. For example, mesh genera-
tion of a surface patch (Patch2d object), which is per-
formed in its parametric space, is based on a previous 
refinement of its boundary segments in their own para-
metric spaces. Similarly, solid mesh generation of a 3D 
region requires the previous refinement of its boundary 
surface patches. 

The implementation of this mesh generation method-
ology is accomplished in the present data structure by 
means of the concept of use of a topological entity by a 
surface. The concept of use in the MG data structure is 
quite different than its concept in the Radial-Edge data 
structure. In this context, use simply means the geometric 
information of a certain entity in the parametric space of a 
surface. These uses are associated to the topological enti-
ties of the model. For example, a vertex that belongs to 
two adjacent surfaces has two uses. Figure 9 illustrates 



  

this example. The single use of topological vertex v1 re-
fers to surface s1, with parametric coordinates u = 0 and v 
= 0. Topological vertex v5 has two uses, one to s1, with 
parametric coordinates u = 1 and v = 1, and other to s2, 
with parametric coordinates u = 1 and v = 0. The same 
idea is adopted for segments. In this case, each use of a 
segment has the parametric coordinates of its end points. 
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Figure 9: Uses of vertices in two adjacent surfaces. 

 
Therefore, a VtxTop object has a list of uses associ-

ated to it in addition to the other topological information 
described previously. The use of a vertex is an object of 
the PointUse class. A PointUse object has a reference to 
its corresponding Point object and another reference to 
the corresponding Surface object. A PointUse object also 
contains two variables to store the parametric coordinates 
of a point on a surface. 

Similarly, a Segment object has a list of uses, which 
are objects of class SegmentUse. A SegmentUse object 
has a reference to the corresponding Segment object and 
another reference to the corresponding Surface object. A 
SegmentUse object also contains variables to hold para-
metric coordinates of a curve segment on a surface. 
 
5 Implementation of NURBS in the CGC Representa-
tion 
 

The original CGC implementation treats only planar (po-
lygonal) surface patches. However, one of the goals of 
this work is to consider CGC models with curved geome-
tries, which is achieved by incorporating NURBS’s ge-
ometry. Among other advantages, NURBS allows model-
ing more complex objects, possibly with holes, with arbi-
trary geometry. 

The extension was relatively simple, because the 
CGC data structure does not depend on the underlying 
geometry, which means that it does not make any differ-
ence if an edge is considered as a straight line or a curve. 

In the CGC representation, objects responsible for 
the definition of topological entities (regions, faces, edges 
and vertices) point to objects that describe their associated 
geometry and attributes (objects of classes RegionAttr, 
FaceAttr, EdgeAttr, and VertexAttr). In addition, CGC 
implements another class that concentrates all geometric 
algorithms. This is the GeomPck class which helps con-
structing a geometric model by calculating the volume of 
a certain region, the intersection between a surface and a 
curve, the location of a point in relation to a region, etc. 

These methods deal with geometric information associ-
ated to each topological entity. Therefore, modifications 
caused by the addition of a new geometry type in the 
CGC implementation are limited to a small group of 
classes that define and manipulate the geometry of a 
model. 

FaceAttr and EdgeAttr objects hold the geometric 
description of faces and edges. This description is now 
stored in two new classes, as can be seen in Figure 10. 
The CGC Surface class defines the geometric representa-
tion of the surfaces of a model, while the CGC Curve 
class defines the geometry of the curves. Both Surface 
and Curve objects have their own parametric spaces. 
There are also the specific sub-classes for certain geome-
try types (for example, Arc class geometrically describes a 
circle arc and the Gordon class, a Gordon surface). The 
methods in these classes manipulate the corresponding 
geometric information. For example, there is a method 
that, given the parametric coordinates of a surface, obtains 
the 3D Euclidian coordinates of the corresponding point. 

As previously mentioned, the geometric representa-
tion of curves and surfaces in the MG modeler uses a pub-
lic domain OOP library [25] based on NURBS. This li-
brary provides the representation of several types of 
curves and surfaces, including the conic and quadric 
forms. 

The connection between the MG/CGC representation 
and the NURBS library is simple. Curve and Surface ob-
jects contain references to their corresponding NURBS 
objects. Figure 11 illustrates this connection. 
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Figure 10: New classes implemented in the CGC repre-
sentation. 
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Figure 11: Relationship between the Curve and Surface 
classes of the CGC representation and the NURBS li-
brary. 

 



  

6 Conclusions 
 

This work described a modeling methodology focused on 
two aspects of the 3D finite element method simulation. 
The first aspect refers to non-manifold geometric model-
ing with automatic region detection (see, for example, 
Figures 12 and 13). In this context, a multi-region repre-
sentation, called CGC representation, is generated by the 
insertion of curved surface patches. The second aspect is 
to provide support for automatic finite element mesh gen-
eration. This methodology is being implemented in an 
existing finite element modeler, called MG.  

The paper also described an OOP class organization 
of a new version of MG that, while maintaining its simple 
and efficient user interface, provides capabilities for 
automatic region detection. The OOP sketch was com-
pleted with the use of a NURBS library that models 
curves and surface patches (Figure 12). 

To achieve this, a hybrid approach was adopted in 
which a full CGC representation of the model is not main-
tained in each step of the geometric modeling. Rather, the 
previous MG data structure was extended such that a 
CGC model can be created at any moment, when the user 
requires region detection or surface intersection. 

Current developments are related to incorporating 
existing surface and solid finite element mesh generation 
algorithms to the system. The final goal is to develop a 
system for geometric modeling and automatic/adaptive 
3D FEM simulation. 
 

 
Figure 12: Modeling with multi-regions and NURBS. 

 

 
Figure 13: Geometric modeling – details of multi-regions. 
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