

An OOP Approach for Mesh Generation of Multi-Region Models with NURBS
William M. Lira1 , Paulo Roma Cavalcanti2 , Luiz C. G. Coelho1, Luiz F. Martha1

1Department of Civil Engineering and

Computer Graphics Technology Group (Tecgraf),
Pontifical Catholic University of Rio de Janeiro (PUC-Rio) 22453-900,

Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ, Brazil.
{william, lula, lfm}@tecgraf.puc-rio.br

2Department of Computer Science,
Federal University of Rio de Janeiro (UFRJ) 21945-970,

Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
roma@lcg.ufrj.br

Abstract: This paper presents an object-oriented approach for creating multi-region non-manifold models with
NURBS. The main motivation is that the geometry and shape of realistic engineering objects are intrinsically
complex, usually composed by several materials and regions. Therefore, automatic and/or adaptive meshing al-
gorithms have become revealed themselves quite useful to increase the reliability of the procedures of a FEM
numerical analysis. The present approach is concerned with two aspects of 3D FEM simulation: geometric
modeling, with automatic multi-region detection, and support to automatic finite element mesh generation. The
final objective is to use geometric models directly in numerical applications.

1 Introduction

Finite element analysis [1,2] and geometric modeling of
solids [3,7] are important items in the process of simulat-
ing engineering problems (see, for example, Figure 1),
especially when an analytic solution is unknown or is dif-
ficult to obtain.

Figure 1: A geometric model and its finite element mesh.

Generally, the Finite Element Method (FEM) is

based on a numerical model obtained from the refinement
or “discretization” of the problem domain, combined with
additional information necessary for the complete defini-
tion of the physical problem. Such information consists of
a set of parameters, called simulation attributes [4,5,6].
The discretization, denominated finite element mesh, con-
sists of a group of nodes or vertices (points with coordi-
nates) and a group of cells, called finite elements, with a
predefined topology (triangular, quadrilateral, or tetrahe-
dral, for example). The elements are defined by a list of
node connectivities (sequence of vertices that belong to
each element). A finite element model is the association
of a finite element mesh with a set of simulation attrib-
utes.

One important aspect of 3D FEM simulation is mesh
generation. This is an area that has been active since the
creation of the method. In general, the mesh generation
process demands time and is quite tiresome, apart from
demanding a certain degree of experience from the re-
sponsible professional for this task. In this context, auto-
matic and/or adaptive meshing algorithms have become
revealed themselves quite useful to increase the reliability
of the procedures of a FEM numerical analysis [1].

Another important aspect in three-dimensional finite
element simulation is the creation of the geometric model.
There are several issues involved in this task, ranging
from user-interface strategies to data representation
schemes. To accomplish this, it is necessary to use special
programs, called modelers, which can digitally reproduce
common geometric forms of the target objects [7]. The
geometry and shape of realistic engineering objects are
intrinsically complex, usually composed by several mate-
rials and regions.

The modeling methodology discussed in this paper is
concerned with two aspects of 3D FEM simulation:
• geometric modeling, with automatic multi-region

detection, and
• support to automatic finite element mesh generation.

This methodology was implemented in an existing
finite element modeler called MG. This is a finite element
pre-processor that was originally devised for the genera-
tion of surface (shell) finite element models [8]. Later on,
the system was extended to also consider solid meshes
[9,10]. MG’s modeling capabilities address two important
issues in 3D finite element modeling. The first is related
to user-interface and interactive graphics procedures to

generate surface meshes [11], and the second is the inter-
section of surface finite element meshes, such as the ones
shown in Figure 2 [12].

Figure 2: Intersection of surface meshes.

The original version of MG is powerful in model rep-

resentation, and has a relatively simple and efficient inter-
face. However, its data structure was not based on any
formal geometric modeling concept. The geometric con-
sistency of a model in many situations relies on user in-
tervention. For example, there is no capability to auto-
matically detect when a volume in space is enclosed off
by a set of surface patches. The user must explicitly indi-
cate this, which may be a hard task in a realistic engineer-
ing model. This capability is particularly important for
finite element mesh generation, as, sometimes it is desir-
able to have several regions, each one meshed by a differ-
ent algorithm.

The formalism necessary for modeling capabilities
that allow automatic recognition of created solid regions
goes beyond the scope of this paper. The methodology
adopted here was previously devised by the authors [13],
and is based on a complete topological representation of a
space subdivision, called Complete Geometry Complex
(CGC), which is summarized in the next section.

This paper describes a class organization, in the con-
text of Object Oriented Programming (OOP), of a new
version of the MG modeler that, still keeping the simple
and efficient user-interface characteristics, provides capa-
bilities for automatic region detection with surface
patches represented by Non-Uniform Rational B-Splines
(NURBS) [14]. To achieve this, a hybrid approach was
adopted in which a full CGC representation of the model
is not maintained all the time. Instead, the previous MG
data structure [8] was extended so that a CGC model can
be created at any moment when the user requires region
detection or surface intersection.

The new class organization also provides support for
automatic surface and solid mesh generation. It is not the
objective here to describe meshing algorithms. It suffices

to say that surface mesh generation is performed in the
parametric space of each surface and that the provided
algorithms in MG are described elsewhere [9,10,12,15].

2 Complete Geometric Complex Representations

In general, there are two main strategies for the represen-
tation of a three-dimensional geometric model: an implicit
scheme and an explicit scheme. The most common im-
plicit scheme is Constructive Solid Geometry (CSG) [16],
in which the target object is reproduced by a set of Boo-
lean operations applied to primitive objects. In the explicit
scheme, the geometry of an object is defined by a set of
surface patches, which may be created through an interac-
tive graphics interface. However, the complete definition
of the solid model requires combinatorial relationships
among the several surface patches, which will result in the
definition of the interior region, model boundaries and
other topological information. This type of solid model
representation is called Boundary Representation (B-REP)
[3,7].

Traditional CSG and B-REP techniques apply to ob-
jects that decompose space into three parts: interior, exte-
rior, and boundary. This class of objects is referred to as
manifold objects, because their boundaries are two-
manifold sets in three dimensions [3]. This means that the
original techniques could not model multi-region objects.

Many applications in engineering need to model
multi-region objects or objects that present other non-
manifold features, such as dangling faces or edges. For
this reason, many works in the literature have proposed
non-manifold modeling schemes [13,17,18,19,20,21,22,
23].

The generation of a consistent non-manifold B-REP
model from a set of surface patches is not a simple task
and may involve surface intersection and region detection.
Considering the user-interface problems related to this
task, it is desirable that the creation of a B-REP model
from a set of surface patches be automated. The ideal en-
vironment for the user would be to create these patches
with no explicit relationship, except using already created
geometry information for the generation of a new patch.
The modeler would automatically generate surface inter-
section curves and topologically link these entities to the
geometric definition.

A previous work by the present research group [13]
proposed a non-manifold approach for modeling multi-
region objects. A general methodology for creating and
manipulating a spatial subdivision in cells of arbitrary
shape and geometry was developed. A spatial subdivision
may be created by means of inserting planar surface
patches one by one, allowing the insertion of new patches
in real time. The object resulting from this decomposition
is classified as Complete Geometric Complex (CGC) be-
cause it is a special case of Geometric Complex [22] that

occupies the entire three-dimensional space (the unlimited
outer region is also represented in the subdivision).

Several works have presented methods to represent
spatial subdivisions. Rossignac and O’Connor [22] ad-
dressed the general problem of representing n-
dimensional objects, possibly with internal structures.
Some data structures used in non-manifold solid modeling
[17,18,19,21] represent, in a general way, the adjacency
relationships of three-dimensional objects not necessarily
homogeneous in dimension. In the present implementa-
tion, the Radial-Edge data structure (RED), proposed by
Weiler [20,21] is adopted.

This data structure is known as Radial-Edge because
it explicitly stores the list of faces radially ordered around
an edge (Figure 3). The Radial-Edge data structure was
conceived for non-manifold modeling and Weiler has
proved its completeness, which means that any adjacency
relationship can be extracted from this representation.

Figure 3: Uses of topological elements in RED.

In order to describe the topology of a spatial subdivi-

sion, the Radial-Edge representation employs the concept
of use of a topological element. A use can be seen as the
occurrence of a topological element in an adjacency rela-
tionship related to an element of higher dimension. Thus,
the Radial-Edge structure explicitly stores the two uses
(sides) of a face by the two regions (not necessarily dis-
tinct) that share that face. Each face-use is bounded by
one or more loop-uses, which are composed by an alter-
nating sequence of edge-uses and vertex-uses (Figure 3).
Vertex-uses are necessary to store non-manifold condi-
tions at vertices.

The RED structure is a hierarchical description of a
spatial subdivision, starting in higher dimension levels
(regions) and reaching the lower levels (vertices) (Figure

4). The topological elements are kept in doubly-linked
circular lists and have pointers to their attributes.

 Model

Region

Shell

Face Use

Loop Use

Edge Use

Vertex Use

Face

Loop

Edge

Vertex

Model

Region

Shell

Face Use

Loop Use

Edge Use

Vertex Use

Face

Loop

Edge

Vertex
Figure 4: Hierarchy of topological entities in RED.

Topological data structures are complex and should

not be manipulated directly. Weiler has introduced a set
of operators that provide a high-level method to access the
Radial-Edge structure. These operators are divided in two
groups. The first group has operators that act on faces of a
spatial subdivision and are analogous to the (two-
manifold) operators presented by Mäntylä [7]. The second
group has operators that are capable of creating wire-
frames and of adding faces, which are attached to speci-
fied edges or wireframes. These are referred to as non-
manifold operators. Considerations about a minimal set of
operators can be found in [24].

The present CGC modeling is implemented as a li-
brary of OOP classes, which provide a set of high-level
operators that manipulate a spatial subdivision. These
operators receive as input geometric information on the
surface patches that are inserted in the spatial subdivision.
This geometric information is automatically translated
into topological information required by Weiler’s non-
manifold and manifold operators.

The CGC modeling capability is one of the key as-
pects of the finite element modeling scheme proposed in
this work. However, up to now the implementation of this
methodology could only treat planar (polygonal) surface
patches. One of the objectives of this work is to extend
the methodology to consider curved surface geometries
using NURBS.

3 Hybrid Modeling Approach

As previously mentioned, the proposed data representa-
tion scheme, which is adopted in the new version of the
MG modeler, is based on a hybrid approach. The basic
idea is to have two separate representations of the same
model. One representation is stored in the modeler’s data
structure. This is the representation that is actually main-

tained in computer memory during the modeling process.
The modeler’s data structure is also permanently stored in
disk when a model is saved. The other representation is a
temporary conversion of the modeler’s data structure into
a CGC representation. In this conversion the model is
modified to reflect possible surface intersection and is
topologically treated to reflect region detection.

The main advantage of this approach is that it com-
bines the functionality and simplicity of MG with the
topological power of representation and robustness of
CGC. There is a two-way communication between the
two representations, as shown in Figure 5. CGC may be
seen as a “topological engine” that generates topological
information, that is consistent with the geometry of a
model. The topological entities identified by the CGC
representation are passed back to the MG representation,
which includes regions that are automatically detected. In
Figure 5, it can also be observed that the geometric de-
scription of the topological entities is common to both
representations. This geometric description is stored in a
separate module based on NURBS representation [25].

MG representation CGC representation

NURBS NURBS

Figure 5: General modules in modeling approach.

The three modules shown in Figure 5 are imple-

mented as OOP classes. CGC class organization is de-
scribed in [26] and NURBS class organization is available
in [25]. MG class organization will be described in the
next section.

The basic information passed from the modeler’s
data structure to the CGC data structure consists of a set
of surface patches defined by the user through MG’s
graphics interface. Each surface patch is inserted in the
CGC representation, which might generate one or more
topological faces. In instances where the patches only
intersect each other at the boundaries, each surface patch
will correspond to a face in CGC. Here, a surface patch is
represented by its boundary curves and by its NURBS
geometric description. These parameters are sufficient to
determine a face in CGC module.

This module processes the surface patches passed by
the MG module and generates a consistent topological
model, which is then converted back to the MG represen-
tation. This conversion is performed, basically, by travers-
ing all regions and faces generated by the CGC module
and transforming them into entities of the MG representa-
tion. Each face in the CGC representation corresponds to
a surface patch in the MG representation. Two patches
may belong to a same geometric surface, in situations
where an intersecting trimming curve subdivided the ini-

tial patch. Similarly, each edge in the CGC representation
corresponds to a curve segment in the modeler’s represen-
tation, and these segments may share the same geometric
curve if they were originated from a curve split. Finally,
each region in the CGC representation will generate a
solid in the MG representation.

In the context of this work, the CGC representation is
generated only when requested by the MG user. This
means that consistency between geometry and topology is
only enforced when desirable. The reason for this is that it
might be very expensive to maintain this consistency after
every step of the modeling process. Three-dimensional
geometric modeling is a complex task that might involve
a series of trial-and-error steps. The proposed hybrid ap-
proach was conceived focusing specifically on the prob-
lem. The MG representation is relatively simple and con-
sequently provides an efficient manipulation of surfaces.
It would not be possible to achieve the same degree of
user-interface efficiency if, at any moment, consistency
between topology and geometry were enforced after each
user-interface task.

4 Modeler’s Class Organization

The main data structure of MG was conceived with the
purpose of supporting both surface (shells) and solid finite
element modeling. The data structure class organization
of MG incorporates the concept of geometric and topo-
logical entities. This structure also maintains the adja-
cency relationships among the entities. Figure 6 shows the
OOP class organization in the MG module. The class dia-
gram shown in this figure, as well as in other figures in
this paper, follows the OMT (Object Modeling Tech-
nique) nomenclature [27].

Entity

Point Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Generic Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

Entity

Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

Entity

Point Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

Entity

Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Geometry Topology

VtxTop

Patch2d Patch3d

Figure 6: Modeler’s general OOP class organization.

The Entity class is subdivided in two sub-classes.

The first, Geometry, refers to the geometric entities of the
model. The other, Topology, represents the entities that
contain the topological information.

For example, in the MG data structure, a vertex in
space has a topological version, which is represented by
an object of the VtxTop class, and a geometric version,
which is represented by an object of the Point class. A
VtxTop object contains a list of references to adjacent
curve segments (Segment objects) and a reference to the
corresponding Point object. An object of the Point class
stores the geometric position of a vertex in the 3D Euclid-
ian space and has a reference to the corresponding VtxTop
object.

Similarly, a Segment object represents the topology
of a portion (segment) of a geometric curve. An object of
this class stores the topological information (pointers to
adjacent vertices, for example) and a reference to its geo-
metric description (Curve object). Figure 7 illustrates the
relationship between a curve (geometry) and its two seg-
ments (topology). In this case, curve c1 has a reference to
its geometric representation (a NURBS object) and a list
of references to Segment objects that belong to it (s1 and
s2). These Segment objects contain references to their end
vertices, (v1,v3) and (v3,v2), respectively, and to curve c1.
A Curve object must have at least one Segment object.

v1

v2

v3

s2

s1

c1

s1

v1 – v3
c1

s2

v3 – v2
c1

c1

s1
s2v1

v2

v3

s2

s1

c1

v1

v2

v3

s2

s1

c1

s1

v1 – v3
c1

s2

v3 – v2
c1

c1

s1
s2

Figure 7: Relationship Curve - Segment.

Another important class in the context of the MG

data structure is class Patch2d, which represents the to-
pology of a portion of a surface. An object of the Patch2d
class stores references to its boundary curves and to its
surface geometric description, which is represented by an
object of class Surface. A Surface object contains a refer-
ence to its geometric representation, i.e., a pointer to a
NURBS object, and a list of references to Patch2d objects
that belong to it. Figure 8 illustrates the relationship be-
tween surface s1 and two corresponding Patch2d objects,
p1 and p2. Each Patch2d object contains topological in-
formation, which mainly consists of a list of Segment ob-
jects on its boundaries. In addition, a Patch2d object
stores a surface finite element mesh that is eventually
generated on it.

p1

s1

p2

s1

s1

p1
p2

p1

p2

s1 p1

s1

p2

s1

s1

p1
p2

p1

p2

s1

Figure 8: Relationship Surface - Patch2d.

An object of the Surface class must have at least one
Patch2d object. A Surface object also contains geometric
information related to the process that was used for its
interactive generation. Currently, a surface may be gener-
ated from boundary curves by bilinear mapping, trilinear
mapping, or sweep [8]. Therefore, each Surface object
contains information about its creation method and a list
of references to its generating curves (curves that were
used for its creation).

A Patch2d object also has references to adjacent
Patch3d objects. An object of the Patch3d class is the
topological representation of a solid region. A Patch3d
object has a list of references to Patch2d objects that form
its boundary and a pointer to the corresponding Solid ob-
ject. In addition, a Patch3d object stores a solid finite
element mesh that is eventually generated in it.

The geometric version of the topological Patch3d
class is the Solid class. A Solid object contains geometric
information about the method used for its generation. Cur-
rently, there are three methods for solid generation: extru-
sion, sweep, or generic generation [9]. A generic genera-
tion of a solid may be performed explicitly by the user (by
simply selecting surface patches on the boundary of the
target solid) or automatically by the CGC representation
when a solid region is detected. Therefore, each Solid
object contains information about its creation method and
a list of references to its generating curves and surfaces
(curves and surfaces that were used for its creation).

An important issue addressed by this data representa-
tion scheme it the support for automatic and/or adaptive
mesh generation. As previously mentioned, finite element
mesh generation is an area of active research and is being
treated by the authors elsewhere [9,10,12,15]. One of the
goals of this research line is the development of a com-
plete system for geometric modeling and 3D finite ele-
ment adaptive simulation. The methodology for adaptive
mesh generation has been tested in two-dimensions [28],
and is based on the refinement of each topological entity
in its own parametric space. For example, mesh genera-
tion of a surface patch (Patch2d object), which is per-
formed in its parametric space, is based on a previous
refinement of its boundary segments in their own para-
metric spaces. Similarly, solid mesh generation of a 3D
region requires the previous refinement of its boundary
surface patches.

The implementation of this mesh generation method-
ology is accomplished in the present data structure by
means of the concept of use of a topological entity by a
surface. The concept of use in the MG data structure is
quite different than its concept in the Radial-Edge data
structure. In this context, use simply means the geometric
information of a certain entity in the parametric space of a
surface. These uses are associated to the topological enti-
ties of the model. For example, a vertex that belongs to
two adjacent surfaces has two uses. Figure 9 illustrates

this example. The single use of topological vertex v1 re-
fers to surface s1, with parametric coordinates u = 0 and v
= 0. Topological vertex v5 has two uses, one to s1, with
parametric coordinates u = 1 and v = 1, and other to s2,
with parametric coordinates u = 1 and v = 0. The same
idea is adopted for segments. In this case, each use of a
segment has the parametric coordinates of its end points.

v1 v2 v3

v6v5v4

s2s1

e2

e3

e4e5

e1

e6 e7
u

v

v

u

v1 v2 v3

v6v5v4

s2s1

e2

e3

e4e5

e1

e6 e7
u

v

v

u

Figure 9: Uses of vertices in two adjacent surfaces.

Therefore, a VtxTop object has a list of uses associ-

ated to it in addition to the other topological information
described previously. The use of a vertex is an object of
the PointUse class. A PointUse object has a reference to
its corresponding Point object and another reference to
the corresponding Surface object. A PointUse object also
contains two variables to store the parametric coordinates
of a point on a surface.

Similarly, a Segment object has a list of uses, which
are objects of class SegmentUse. A SegmentUse object
has a reference to the corresponding Segment object and
another reference to the corresponding Surface object. A
SegmentUse object also contains variables to hold para-
metric coordinates of a curve segment on a surface.

5 Implementation of NURBS in the CGC Representa-
tion

The original CGC implementation treats only planar (po-
lygonal) surface patches. However, one of the goals of
this work is to consider CGC models with curved geome-
tries, which is achieved by incorporating NURBS’s ge-
ometry. Among other advantages, NURBS allows model-
ing more complex objects, possibly with holes, with arbi-
trary geometry.

The extension was relatively simple, because the
CGC data structure does not depend on the underlying
geometry, which means that it does not make any differ-
ence if an edge is considered as a straight line or a curve.

In the CGC representation, objects responsible for
the definition of topological entities (regions, faces, edges
and vertices) point to objects that describe their associated
geometry and attributes (objects of classes RegionAttr,
FaceAttr, EdgeAttr, and VertexAttr). In addition, CGC
implements another class that concentrates all geometric
algorithms. This is the GeomPck class which helps con-
structing a geometric model by calculating the volume of
a certain region, the intersection between a surface and a
curve, the location of a point in relation to a region, etc.

These methods deal with geometric information associ-
ated to each topological entity. Therefore, modifications
caused by the addition of a new geometry type in the
CGC implementation are limited to a small group of
classes that define and manipulate the geometry of a
model.

FaceAttr and EdgeAttr objects hold the geometric
description of faces and edges. This description is now
stored in two new classes, as can be seen in Figure 10.
The CGC Surface class defines the geometric representa-
tion of the surfaces of a model, while the CGC Curve
class defines the geometry of the curves. Both Surface
and Curve objects have their own parametric spaces.
There are also the specific sub-classes for certain geome-
try types (for example, Arc class geometrically describes a
circle arc and the Gordon class, a Gordon surface). The
methods in these classes manipulate the corresponding
geometric information. For example, there is a method
that, given the parametric coordinates of a surface, obtains
the 3D Euclidian coordinates of the corresponding point.

As previously mentioned, the geometric representa-
tion of curves and surfaces in the MG modeler uses a pub-
lic domain OOP library [25] based on NURBS. This li-
brary provides the representation of several types of
curves and surfaces, including the conic and quadric
forms.

The connection between the MG/CGC representation
and the NURBS library is simple. Curve and Surface ob-
jects contain references to their corresponding NURBS
objects. Figure 11 illustrates this connection.

ObjectLightWeight

CGC Curve CGC Surface

BilinearCoons Gordon LoftPolyLine Arc Interp SweepTrilinearCoons

ObjectLightWeight

BilinearCoons Gordon LoftPolyLine Arc Interp SweepTrilinearCoons
Figure 10: New classes implemented in the CGC repre-
sentation.

ptr_nurbs

(Curve)

(NURBS Curve)

ptr_nurbs

(Surface)

(NURBS Surface)

ptr_nurbs

(Curve)

(NURBS Curve)

ptr_nurbs

(Surface)

(NURBS Surface)

Figure 11: Relationship between the Curve and Surface
classes of the CGC representation and the NURBS li-
brary.

6 Conclusions

This work described a modeling methodology focused on
two aspects of the 3D finite element method simulation.
The first aspect refers to non-manifold geometric model-
ing with automatic region detection (see, for example,
Figures 12 and 13). In this context, a multi-region repre-
sentation, called CGC representation, is generated by the
insertion of curved surface patches. The second aspect is
to provide support for automatic finite element mesh gen-
eration. This methodology is being implemented in an
existing finite element modeler, called MG.

The paper also described an OOP class organization
of a new version of MG that, while maintaining its simple
and efficient user interface, provides capabilities for
automatic region detection. The OOP sketch was com-
pleted with the use of a NURBS library that models
curves and surface patches (Figure 12).

To achieve this, a hybrid approach was adopted in
which a full CGC representation of the model is not main-
tained in each step of the geometric modeling. Rather, the
previous MG data structure was extended such that a
CGC model can be created at any moment, when the user
requires region detection or surface intersection.

Current developments are related to incorporating
existing surface and solid finite element mesh generation
algorithms to the system. The final goal is to develop a
system for geometric modeling and automatic/adaptive
3D FEM simulation.

Figure 12: Modeling with multi-regions and NURBS.

Figure 13: Geometric modeling – details of multi-regions.

7 Acknowledgements

The first author acknowledges a doctoral fellowship pro-
vided by CNPq. The authors acknowledge the finantial
support provided by agency CNPq/CTPetro, process
number 468447/2000-8, and by agency Finep/CTPetro,
processes numbers 65999045400 and 650003600. The
authors are grateful to Carolina Alfaro for the manuscript
revision. The present work has been realized in
Tecgraf/PUC-Rio (Computer Graphics Technology
Group).

8 References

[1] O.C. Zienkiewicz and R.L. Taylor, The Finite Element
Method, Fifth ed.. Vols. 1 and 2, Butterworth-Heinemann
(2000).

[2] K.J. Bathe, Finite Element Procedures. Pretice Hill
(1996).

[3] C.M. Hoffmann, Geometric & Solid Modeling: An
Introduction. Morgan Kaufmann Publishers (1989).

[4] M.T.M. Carvalho, L.F. Martha and P.A. Wawrzynek,
An Architecture for Configuration of Geometric Model-
ers: Application to Computational Mechanics. XXII
SEMISH, Vol. 1, pp. 123-134, 1995 (in Portuguese).

[5] M.T.M. Carvalho, A Strategy for the Development of
Configurable Applications in Computational Mechanics.
PhD Thesis, Department of Civil Engineering, Pontifical
Catholic University of Rio de Janeiro (1995) (in Portu-
guese).

[6] W.W.M. Lira, A Configurable Integrated System for
Simulations of Computational Mechanics Problems. MSc
Dissertation, Department of Civil Engineering, Pontifical
Catholic University of Rio de Janeiro (1998) (in Portu-
guese).

[7] M. Mäntylä, An Introduction to Solid Modeling Com-
puter. Science Press, Rockville (Maryland, 1988).

[8] L.C.G. Coelho, Shell Modeling with Parametric Inter-
sections. PhD Thesis, Department of Informatics, Pontifi-
cal Catholic University of Rio de Janeiro (1998) (in Por-
tuguese).

[9] A.C.O. Miranda, Integration Finite Element Mesh
Generation Algorithms. MSc Dissertation, Department of
Civil Engineering, Pontifical Catholic University of Rio
de Janeiro (1999) (in Portuguese).

[10] J.B. Cavalcante Neto, P. A. Wawrzynek, M.T.M.
Carvalho, L.F. Martha and A.R. Ingraffea, An Algorithm
for Three-dimensional Mesh Generation for Arbitrary
Regions with Cracks. Engineering with Computers, vol.
17, no. 1, pp. 75-91, 2001.

[11] L.C.G. Coelho and C.S. Souza, Problems Communi-
cation and Geometric Solutions in a 3D Interface. Pro-
ceedings of SIBGRAPI'95, pp. 183-190, 1995.

[12] L.C.G. Coelho, M. Gattass and L.H. Figueiredo, In-
tersecting and Trimming Parametric Meshes on Finite-
Element Shells. International Journal for Numerical
Methods in Engineering, vol. 47, no. 4, pp 777-800, 2000.

[13] P.R. Cavalcanti, P.C.P. Carvalho and L.F. Martha,
Non-manifold Modeling: An Approach Based on Spatial
Subdivision. Computer-Aided Design, vol. 29, no. 3, pp.
209-220, 1997.

[14] L. Piegl and W. Tiller, The Nurbs Book, 2nd ed.
Springer (Ottawa, 1999).

[15] A.C.O. Miranda, J.B. Cavalcante Neto and L.F. Mar-
tha, An Algorithm for Two-dimensional Mesh Generation
for Arbitrary Regions with Cracks. SIBGRAPI’99, pp.
29-38, 1999.

[16] A.G. Requicha, Constructive Solid Geometry. Uni-
versity of Rochester, Production Automation Project
(1977).

[17] D.P. Dobkins and M.J. Laszlo, Primitives for the
Manipulation of Three-dimensional Subdvisions. Third
ACM Symposium on Computational Geometry, pp. 86-99
(Waterloo, 1987).

[18] M.J. Laszlo, A Data Structure for Manipulating
Three-dimensional Subdivisions. PhD Thesis, Departa-
ment of Computer Science, Princeton University (1987).

[19] P. Lienhardt, Extension of the Notion of Map Subdi-
visions of a Three-dimensional Space. In STACS’88 Pro-
ceedings of the Cinquième Symposium sur les Aspects
Thèoriques de L’Informatique, Bordeaux, 1988.

[20] K. Weiler, Topological Structures for Geometric
Modeling. PhD Thesis, Rensselear Polytechnic Institiute,
Troy (N.Y., 1986).

[21] K. Weiler, The Radial-Edge Structure: A Topological
Representation for Non-manifold Geometric Boundary
Representations. Geometric Modeling for CAD Applica-
tions, pp. 3-36 (North Holland, 1988).

[22] J.R. Rossignac and M.A. O’Connor, A Dimensional-
independent Model for Pointsets with Internal Structures
and Incomplete Boundaries. Geometric Modeling for
Product Engineering, pp. 145-180, (North Holland, 1990).

[23] J.R. Rossignac and A.G. Requicha, Constructive
Non-regularized Geometry. Computer Aided Design, vol.
23, no. 1, pp. 21-32, 1991.

[24] W.S. Ting, Considerations about a Minimal Set of
Non-manifold Operations. Technical Memo, Technische
Hochshule Darmstadt – GRIS, Wilhelminen-strabe, 7
DA-6100, FRG (1990).

[25] P. Lavoie, NUSBS++: The Nurbs Package - User’s
Reference Manual – Version 3.0,
http://yukon.genie.uottawa.ca/~lavoie/software/nurbs/,
Ottawa, 1999.

[26] P.R. Cavalcanti, Creation and Management of Space
Subdivisions. PhD Thesis, Department of Computer Sci-
ence, Pontifical Catholic University of Rio de Janeiro
(1992).

[27] J. Rumbaugh, Object-Oriented Modeling and Design.
Prentice-Hall (Englewood Cliffs, 1991).

[28] G.H. Paulino, I.F.M. Menezes, J.B. Cavalcante Neto
and L.F. Martha, A Methodology for Adaptive Finite Ele-
ment Analysis: Towards an Integrated Computational
Environment, Computational Mechanics, vol. 23, no. 5/6,
pp. 361-388, 1999.

