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1  Introduction

Continuous physical systems, such as the airflow around an aircraft, the stress con-
centration in a dam, the electric field in an integrated circuit, or the concentration of
reactants in a chemical reactor, are generally modelled using partial differential equa-
tions. To perform simulations of these systems on a computer, these continuum equa-
tions need to be discretised, resulting in a finite number of points in space (and time)
at which variables such as velocity, density, electric field are calculated. The usual
methods of discretisation, finite differences, finite volumes and finite elements, use
neighbouring points to calculate derivatives, and so there is the concept of a mesh or
grid on which the computation is performed.

There are two mesh types, characterised by the connectivity of the points. Structured
meshes have a regular connectivity, which means that each point has the same
number of neighbours (for some grids a small number of points will have a different
number of neighbours). Unstructured meshes have irregular connectivity: each point
can have a different number of neighbours. Figure 1 gives an example of each type of
grid. In some cases part of the grid is structured and part unstructured (e.g., in vis-
cous flows where the boundary layer could be structured and the rest of the flow
unstructured).

 Figure 1:  Structured mesh (left) and unstructured mesh (right).

In the rest of this chapter, the various discretisation methods are described, with their
mesh requirements. Chapter 2 describes the methods used to generate structured
meshes in simple domains (algebraic and elliptic methods) and the extension to com-
plex domains using multiblock. Chapter 3 describes methods used to generate
unstructured meshes, concentrating on the two main methods for producing triangu-
lar/tetrahedral meshes: advancing front and Delaunay triangulation. Chapter 4 gives
a very brief introduction to adaptive meshing.
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1.1  Discretisation and mesh type
The main discretisation methods are finite differences [8], finite volumes (which is
equivalent to finite differences) [9] and finite elements [10]. To illustrate the methods,
we consider the conservation form of the convection equation

where  is the density,  is the velocity, and  is a source term. The  term is the
flux of .

The finite difference formulation approximates the derivatives using neighbouring
points, e.g., for a regular, rectangular grid with spacing  in the  direction

.

Although irregular grids can be used for finite differences, regular grids are invariably
used. These lead to simple difference schemes and efficient solvers (on vector
machines, for example). There can be problems with the finite difference scheme at
coordinate singularities for certain regular grids (e.g., spherical polar coordinates)
[12]

In the finite volume formulation, the physical space is split up into small volumes
and the partial differential equations integrated over each of these volumes:

Then the variables are approximated by their average values in each volume, and the
fluxes through the surfaces of each volume are approximated as function of the varia-
bles in neighbouring volumes.

Finite volume discretisation can use both regular and irregular meshes. In an irregu-
lar mesh the fluxes through the surfaces are still well defined.

The finite element method also splits the spaces up into small volumes, the ‘elements’.
In each element, the variables and fluxes are approximated using weighting func-
tions. The computational variables are the coefficients of these weighting (or ‘shape’)
functions.

Finite element methods generally use irregular meshes: there is no special advantage
in using regular meshes.

1.2  Mesh characteristics
For all types of meshes, there are certain characteristics that we want to control.

• The local density of points. High density gives more accuracy, but computation
takes longer. This leads to adaptive meshing methods , treated very briefly in
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Chapter 4.

• The smoothness of the point distribution. Large variations in grid density or
shape can cause numerical diffusion or anti-diffusion and dispersion or refrac-
tion of waves. This can lead to inaccurate results or instability [12].

• The shape of the grid volumes. For instance, boundary layers in fluid flow re-
quire a grid that is very compressed normal to the flow direction. In the finite
element method using triangular elements the maximum angle must be bound-
ed strictly below  to prove convergence of the method as the element size is
reduced [11].

For simple domains, the choice between regular or irregular meshes is governed
mainly by the discretisation method. However, for complex domains (e.g., the inside
of a hydro-electric turbine) irregular meshes are preferred to regular meshes. Irregu-
lar mesh generation (at least for triangular or tetrahedral elements) can be fully auto-
matic and fast. Regular mesh generation requires the domain to be split up into
simple blocks which are then meshed automatically. This block decomposition is at
best semi-automatic and can require man-months of user effort.

π
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2  Structured meshes

This chapter begins with a discussion of boundary-fitted grids and the discretisation
of PDEs on them, then deals with the main methods for grid generation of simple
domains (using algebraic or differential equation methods) and then explains the
multiblock concept used for more complicated domains. References [12] and [13] are
detailed expositions of structured mesh generation.

2.1  Boundary-fitted meshes
Structured meshes are characterised by regular connectivity, i.e., the points of the grid
can be indexed (by 2 indices in 2D, 3 indices in 3D) and the neighbours of each point
can calculated rather than looked up (e.g., the neighbours of the point are at

, , etc.). Meshes on a rectangular domain are trivial to generate
(though come care needs to be taken in the discretisation at convex corners) and struc-
tured mesh generation techniques concentrate on meshing domains with irregular
boundaries, e.g., the flow in blood vessels, or the deformation, flow and heat transfer
in metal being formed in dies. Generally the meshes are generated so that they fit the
boundaries, with one coordinate surface forming (part of) the boundary. This gives
accurate solutions near the boundary and enables the use of fast and accurate solvers.
For fluid flow these grids allow the easy application of turbulence models, which usu-
ally require the grid to be aligned with the boundary. The alternative is to use a rec-
tangular grid which is clipped at the boundary, with local grid refinement near sharp
features on the boundary (‘Cartesian grids’). This will reduce the truncation order at
the boundary and will require the mesh cells to be clipped at the boundary, increasing
the complexity of the solver (even for a finite volume code). Cartesian grid generation
is very fast and has been used for Euler aerodynamics [14]; it does not appear to be
applicable to Navier-Stokes aerodynamics.

The most common method of generating boundary-fitting grids is to have one contin-
uous grid that fits to all the boundaries. The effect is to fit a contiguous set of rectan-
gular computational domains to a physical domain with curved boundaries (Figure
2).

 Figure 2:  Two-block boundary-fitted grid

It is difficult to fit complex domains with one mapping from a rectangular computa-
tional domain without generating excessively skewed grids. To get round this prob-

i j,( )
i 1 j,+( ) i 1 j,–( )
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lem the domain is split up into blocks and each block is gridded, with some continuity
requirements at the block interfaces; this is multiblock. The decomposition of the
domain into blocks is usually done manually using CAD techniques and is slow.

An alternative to continuous boundary-fitted grids with multiple blocks is to use a
boundary fitting grid near each boundary, and simple rectangular grid in the interior,
and interpolate between them. These are called overset or chimera grids (Figure 3)[15].

 Figure 3:  Overset grids

This type of grid is easier to generate than a multiblock grid since each grid is local
and doesn’t need to match to others. The individual grids will generally be of high
quality (low distortion). However, the interpolation can be difficult, especially with
more than two grids overlapping, and it adds to the solver time (increasing it by 10%-
30%). The overlapping grids cannot be too different in resolution and this can cause
problems with the grids required for boundary layers in viscous flow simulations.

Chimera grids are very useful for moving boundaries (e.g., helicopter blades) or mul-
tiple boundaries (e.g., particles in a fluid). Most of the grid remains fixed but the inter-
polation changes as the grids move with the boundaries.

Chimera grids do have certain advantages, and the recent work [16] on conservative
interpolation methods have increased their usefulness. However, the bulk of struc-
tured grid generation is based on multiblock type grids, and we will concentrate on
these for the rest of this chapter.

2.2  Problem solution on curved grids
Once the grid is generated, the physical problem has to be discretised and solved on
this grid. It is possible to calculate finite difference or finite volume formulas using the
physical grid directly, but this will reduce the truncation order of the FD/FV scheme
since the grids are generally non-uniform. The preferred method is to transform the
equations used to model the problem into computational space. Since the physical
grid is defined as some transformation from the rectangular computational grid, this
process is straightforward. The resulting equations in the computational space will
include the effects of the coordinate transformation, e.g., time derivatives of moving
grids. The finite differencing can be done on the transformed equations, on the com-
putational grid. Since the computational grid is usually completely regular, high
order methods can be used, and the truncation order is preserved if the resulting FD/
FV equations are transformed back to the physical grid. (Flow solvers can be devel-
oped to use chimera grids, with the extra book-keeping required to interpolate
between each grid.)

Although the order of FD/FV methods can be preserved, there are other effects of cur-
vilinear grids on the accuracy of the solution.
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• Grid size variation gives numerical diffusion (or anti-diffusion leading to insta-
bility). The effect is worst with small grid size and large solution gradients.

• Non-orthogonality, or skewness, of the (physical) grid increases the coefficient

of the truncation error, but doesn’t change the order. Skewness of up to  are
acceptable in the centre of the grid, but one-sided differences are used at bound-
aries, where orthogonality should be maintained. These limits on skewness are
the main reason that multiblock methods are used.

• In a multiblock scheme, the corner junctions between blocks are usually points
with non-standard connectivity (e.g., in 2D, 5 grid lines from a point rather than
4) and these need special treatment (e.g., for finite volume discretisation these
points need to be discretised in physical space).

2.3  Boundary fitting grids on a single block
For simple domains, a single grid can be used without leading to excessive skewness.
The computational space is a rectangle or cuboid, or at least has a rectangular bound-
ary, with a regular, rectangular grid. We then need to define a 1-1 mapping from the
computational space to the physical space. The methods currently used are

• algebraic grid generation, where the grid is interpolated from the physical
boundaries,

• methods where a PDE for the grid point coordinates is solved,

• variational grid generation, where some functional, e.g., smoothness, is maxim-
ised/minimised (variational grid generation is not treated in this report, see [13]
for details),

• other methods, (not treated in this report), e.g., conformal mapping [12], [13].

2.4  Algebraic grid generation: interpolation
The method used in the algebraic method of grid generation is transfinite interpolation
(TFI).

2.4.1 Transfinite interpolation (TFI)

Working in 2D (the extension to 3D is straightforward), take the computational
domain as the unit square  with coordinates  and , and the physical
domain as some region with coordinates  and . To generate the grid in the physical
space, we would create a grid in the unit square and map this into the physical
domain. There are two requirements for this mapping (Figure 4):

• It must be 1-1, and

• the boundaries of the computational space must map into the boundaries of the
physical space,

45°

0 1,[ ] 0 1,[ ]× s t

x y
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but otherwise the mapping can be arbitrary, although it may not produce a good grid.

 Figure 4:  Mapping of boundaries

TFI is one kind of mapping, where the physical coordinates, treated as a function of
the computational coordinates, are interpolated from their values on the boundaries
of the computational domain. Since the data is given at a non-denumerable number of
points, the interpolation is called transfinite.

The 2D interpolation is constructed as a linear combination of 2 1D interpolations
(also called projections) and their product. First define the blending functions ,

and ,  that will be used to interpolate in each direction.  interpolates values

from the  boundary into the domain,  interpolates values from the

boundary into the domain, and similarly for ,  in the  direction. The require-

ments on  and  are

and similarly for ,  in the  direction. The simplest blending function is linear,

giving linear interpolation

The 1D transfinite interpolations (projections) are formed as follows (for the  coordi-
nate)

s

t

10
0

1

Computational
domain Physical domain

φ0 φ1

θ0 θ1 φ0

s 0= φ1 s 1=

θ0 θ1 t

φ0 s( ) φ1 s( )

φ0 0( ) 1 φ0 1( ), 0= =

φ1 0( ) 0 φ1 1( ), 1= =

θ0 θ1 t

φ0 s( ) 1 s–=

φ1 s( ) s=

x

Ps x[ ] s t,( ) φ0 s( ) x 0 t,( ) φ1 s( ) x 1 t,( )+=

Pt x[ ] s t,( ) θ0 t( ) x s 0,( ) θ1 t( ) x s 1,( )+=



Edinburgh Parallel Computing Centre 13

and the product projection is

which is the finite interpolant for the values of  at the four corners of the computa-
tional domain. The 2D transfinite interpolation is then

which interpolates to the entire boundary. To form the grid in the physical space, this
interpolant is used to map the points of a regular grid in the computational space (Fig-
ure 5).

 Figure 5:  Transfinite interpolation

It is possible to extend the TFI to so that it interpolates to several coordinate lines, not
just the boundaries. This is useful to control the grid density and also may be required
to ensure a 1-1 mapping (i.e, a valid grid). The blending functions would then be, for
example, cubic splines. It is also possible to match normal derivatives, e.g. , at
the boundaries. This allows grid slope continuity between the blocks of a multiblock
grid.

There are some problems with TFI. The mapping will propagate boundary singulari-
ties (corners) into the interior of the domain, which is not ideal for fluid flow simula-
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tions. A more serious problem is that if the mapping is not 1-1 then overspill occurs
(Figure 6).

 Figure 6:  Overspill

This can be corrected be re-parameterising the boundaries, or adding constraint lines
(surfaces in 3D) inside the domain.

However, TFI grid generation is very fast and is the only competitive method for 3D.
It is possible to use an PDE based generator to refine a grid produced using TFI.

2.5  PDE grid generation
The idea behind these methods is to define PDEs for the physical space coordinates in
terms of the computational space coordinates, and then solve these equations on a
grid in computational space to create a grid in physical space. The main type of PDE
used is elliptic, which is suitable for domains with closed boundaries (for unbounded
domains, a fictitious boundary at large distances is used). The alternatives are hyper-
bolic and parabolic equations, which are used for unbounded domains.

2.5.1 Elliptic grid generation

These methods start with an PDE for the computational space coordinates  and

in terms of the physical space coordinates  and  (the extension to 3D is straight-
forward). The simplest example is the Laplace equation
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Parts of the physical boundary, corresponding to coordinate lines, are then ‘equipo-
tential surfaces’ (Figure 7).

 Figure 7:  Elliptic grid generation boundaries

In 2D, the extremum principle guarantees that the mapping is 1-1, and the Laplace
operator is smoothing so that boundary slope discontinuities are not propagated into
the interior.

In order to solve the equation in its current form, you would already need a grid in

the physical domain, so the equation is transformed so that  are the dependent var-

iables, and  are the independent variables

Using the equation for  in the relation

gives

and  (the metric tensor) can be expressed in terms of  (see [12] for

details).

This quasi-linear equation can then be solved in the rectangular  domain, with the
location of the points on the physical boundaries as the boundary data at the points
on the computational boundaries. Any standard solver can be used, and an algebrai-
cally generated grid can be used as the initial guess to ensure/increase convergence.

Grids based on the Laplace equation are not very flexible. The coordinate lines tend to
be equally spaced, except near convex or concave boundaries, and it is not possible to
control the grid line slope at the boundaries (since this is a 2nd order equation).

To control the grid spacing and slope, we can add a source term (control function), giv-
ing Poisson’s equation
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The effect of the control function is shown in Figure 8

 Figure 8:  Effect of control functions

The metric tensor is factored out of the source terms to give, in general

The transformed equations now become

Usually only one-dimensional stretching in each direction is required; then the source

term is  (no sum). In theory, the source terms are defined in terms of the physical

coordinates, but in practice they are defined in terms of the computational coordi-
nates, so they will cause attraction to/repulsion from grid points rather than fixed
physical points. This makes the direct (manual) use of control functions rather diffi-
cult and they tend to be used indirectly to achieve a variety of effects

• Because of the strong smoothing, the coordinate lines will tend to be equally
spaced in the interior of the domain. To get the boundary point spacing to prop-
agate into the interior, source terms can be derived from boundary data to give
the desired spacing, and then interpolated (using transfinite interpolation)

• The point spacing is fixed on the boundary, and since the grid generation equa-
tions are 2nd order, it is not possible to control the coordinate line slope at the
boundary as well. One possible solution is to use the biharmonic equation rather
than Laplace’s equation, but the preferred method is to use control functions. In
Steger and Sorenson’s method [12] the control functions are iteratively adjusted
as the elliptic equation is solved, and the grid line slope at the boundary, the grid
point spacing along the boundary, and the spacing of the first parallel grid line
from the boundary, can all be controlled. This can be used to give a grid that is
orthogonal at the boundary (e.g., for boundary layers). It can also be used to give
slope and spacing continuity for patched grids (for embedded grids in multi-
block, but see later for a better but slower method of matching at block bound-
aries).

2.6  Implementation in 3D
In 3D we have a cuboid as the computational domain and the generation process pro-
ceeds in the order: edges, surfaces, volume. First we choose the computational grid.
The gridding of the edges is calculated using a 1D Poisson equation. Then the bound-
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ary surface grids are generated. This is similar to 2D grid generation, but the surface
curvature needs to be taken into account (surfaces are usually defined in the CAD sys-
tem as a function of 2D parameter space, e.g., contiguous bicubic splines patches, and
simple 2D grid generation can be performed in this space). Finally, the 3D grid gener-
ations can be done, using the surface grids as data.

There are some implementation difficulties with elliptic grid generation

• The transformed equations are non-linear, so using a good initial guess (from an
algebraic grid generator) will speed up convergence.

• There can be slow convergence (or failure) for large control functions, sharp cor-
ners, or highly stretched grids.

• The method is really too slow for 3D grids, where algebraic techniques are gen-
erally used.

2.7  Other methods
2.7.1 Hyperbolic grid generation

Instead of using an elliptic PDE to generate the grid, hyperbolic equations have been
used, e.g. in 2D

where the first equation enforces orthogonality and the second controls the cell area.
These methods are also available in 3D. They have certain characteristics

• they produce orthogonal grids,

• they don’t smooth boundary discontinuities,

• they are applicable to exterior domains (e.g., the flow around an aerofoil). The
solution for the grid coordinates is marched out from the boundary,

• they can fail for concave boundary surfaces (as the solution proceeds, gridlines
overlap and cell volumes become negative),

• they are fast, taking about the same time as one iteration of an elliptic grid gen-
erator.

2.7.2 Parabolic grid generation

Parabolic methods have been used for grid generation, combining the speed of the
hyperbolic generator (marching) with increased smoothing, but these methods do not
seem to be widely used.

2.8  Multiblock
In theory, complex goemetries can be mapped to one rectangular (here take rectangu-
lar to apply to 2D and 3D) region (perhaps not simply-connected) but this will lead to
unacceptable distortion of the grid cells. In practice, the physical region is broken up
into pieces that each have a (relatively) simple mapping from a rectangular grid.
These pieces (blocks) are fitted together (multiblock) with some degree of grid continu-
ity at their interfaces, ranging from none (even the grid point coordinates differ) to

x
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ξ0yξ1+ 0=
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complete (looks like a single grid with no slope or spacing discontinuities). So the grid
generation process splits into two parts, the decomposition of the physical domain
into blocks and the gridding of each block. The decomposition process has not yet
been fully automated, and requires considerable user interaction (e.g., choosing block
edges to align with object edges) to produce good meshes. The meshing of the blocks
can proceed automatically, using one of the methods discussed above.

Before looking at multiple blocks, we look at some extensions to a simple rectangular
(physical) block that can be used to fit objects and then can be inserted into the multi-
block scheme as a single block.

2.8.1 C, O, H grids

C, O, and H grids, so named because of their approximate shape, are slight extensions
of the simple ‘rectangular’ block. The computational blocks are usually simple rectan-
gles, but corners in the computational space need not correspond to corners in the
physical space and vice versa (Figure 9). At these degenerate points care needs to be
taken with the difference formulation.

 Figure 9:  Degenerate points

The computational block can be multiply connected (Figure 10),

 Figure 10:  Multiply-connected block

but cuts can be made to transform them to simply-connected blocks, mappable to a
rectangle, and this leads to the C, O and H grids (in fact the H grid type includes this
multiply-connected block).
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The O grid just a polar grid (Figure 11)

 Figure 11:  O type grid

The C grid (Figure 12) was developed for aerofoils, with rounded leading edges and
sharp trailing edges. It gives a much better grid (and more accurate solutions) than an
H type grid about an aerofoil.

 Figure 12:  C type grid

The H grid is a Cartesian-type grid, but allowing a multiply-connected region as
shown before, or with the interior slab reduced to a slit (Figure 13).

 Figure 13:  H type grid

Across the cut, the coordinate directions or species can change (see Figure 12). This
will mean that special cases will have to be processed in the difference formulation of
the problem (and for the grid generation if a PDE method is used). This complication
can be avoided by using a extra layer of points, a halo, to hold copies of the connecting
points from the other side of the cut (Figure 14). This is almost the same as using
haloes in domain decomposition for parallel processing, but in Figure 14 the ‘bound-
ary’ is along a line/surface of grid points. In a finite volume formulation the data
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points are centred on the grid cells, and in this case the haloes are exactly the same as
in domain decomposition.

 Figure 14:  Halo points

Once the haloes are set up, the same difference formulas can be used in the interior
and on the cuts.

2.8.2 Multiblock

Using C, O and H grids in the component blocks, we can now create composite grids:
multiblock.

The first step is to segment the physical region into sub-regions each bounded by 4
(curved) sides in 2D or 6 surfaces in 3D. This step requires considerable user interac-
tion to generate a good decomposition of the domain (e.g., with block edges aligned
with sharp features).

The second, automatic, step is to generate grids in each sub-region. The overall grid is
formed by joining these sub-grids together. The degree of continuity of the grid lines
at the boundaries between the sub-regions can be anything from complete continuity
of all derivatives to no continuity, not even the grid points on the boundary. Evidently,
the less continuity, the more interpolation/approximation will have to be done in the
solver when processing sub-region boundaries, and there will be some loss of accu-
racy in the difference formulations. If algebraic methods are used in each block, grid
line continuity is ensured by generating the common edges and then surfaces (in 3D)
and then volumes, each step using the boundary points generated by the previous
one. It is also possible to apply TFI to grid line slopes, and this allows slope/spacing
continuity to be ensured. If PDE (elliptic) methods are used, the equations can be
solved in the whole domain, using the haloes to transfer physical coordinate informa-
tion from one block to its neighbours. This gives complete continuity of the grid coor-
dinates and the region boundaries will also adjust. Solving over the whole domain is
very time consuming, so the alternative is to solve in each block and use Steger and
Sorenson type control functions to ensure slope/spacing continuity.

Figure 15 shows a simple multiblock example, with the computational grid points
that map to a single physical grid point identified.
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 Figure 15:  Example of multiblock: 3 C-type grids

There are some disadvantages with fully boundary-fitted multiblock grids:

• The blocking requires a great deal of user effort, this can be 1 man-month for
complex configurations. Several different physical configurations may be inves-
tigated in the design phase of a product, and each may need a different block
structure

• Changes of geometry in one block can cause changes to many other blocks

• Change in the grid point distribution in one block, e.g. adding points near a
sharp feature on an object, will generally cause changes in other blocks if grid
point continuity is to be maintained.

• Requiring grid point continuity makes it difficult to increase resolution in one
block without (unnecessarily) increasing the resolution in other block

2.9  Summary
The main method of structured grid generation is multiblock with TFI or elliptic gen-
eration in the blocks. The regularity of structured grids allows fast solvers to be used,
vectorisation/parallelisation is easy and cache use is efficient. There is a large user
effort in constructing the multiblock decomposition and the tendency for complex
configurations is now to use unstructured meshes, which can be automatically
generated, even though the solvers are slower.
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3  Unstructured Meshes

Unstructured meshes have been developed mainly for the finite element method.
There is a large range of possible shapes for finite elements: tetrahedra, prisms,
blocks, and there can be arbitrary connectivity, leading to unstructured meshes. How-
ever, the only shapes that can be used to generate meshes fully automatically are trian-
gles in 2D and tetrahedra in 3D. Although block elements are desirable, it is much
harder to generate grids of block elements automatically (and there will be prisms or
tetrahedra required in some regions). The bulk of this chapter considers only triangu-
lar/tetrahedral mesh generation. Reference [17] is a detailed exposition of unstruc-
tured mesh generation.

3.1  Mesh requirements for the Finite Element
Method

The Finite Element Method (FEM) has certain requirements of a mesh.

• The mesh must be valid, i.e. no holes, no self-intersection, no faces joined at two
or more edges, etc. This is an obvious requirement, but many mesh generation
schemes require (and their implementations contain) a large amount of checking
for these conditions.

• The mesh must conform to the boundary of the domain. Again this is an obvious
requirement, but again some schemes (e.g., a straightforward Delaunay triangu-
lation) will not satisfy this, and the generation scheme will need to check and
correct any edges/faces that intersect the boundary.

• The density of the mesh must be controllable, to allow trade-off between accu-
racy and solution time.

• The grid density will vary depending on local accuracy requirements, but this
variation must be smooth to reduce or eliminate numerical diffusion/refraction
effects.

• There are some requirements on the shape of elements. In general, the elements
should as ‘equiangular’ as possible, e.g. equilateral triangles, regular tetrahedra.
Highly distorted elements, e.g. long, thin triangles, squashed tetrahedra, can
lead to numerical stability problems caused by round-off errors. In addition, the
convergence properties of FEM are proved in the limit of small element size only
if the maximum angle in an element is bounded away from  [11]. These re-
quirements are modified for boundary layers, where highly stretched elements
are desired and the FEM formulation allows for them. Even in this case, the min-
max-angle property is required.

Triangles/tetrahedra can fit irregular boundaries and allow a progressive change of
element size without excessive distortion, and so are well-suited for mesh generation
for FEM. In addition, there are fully-automatic methods for generating triangular/tet-
rahedral meshes. However, linear tetrahedra are not that good for FEM (they are too
‘stiff’) and a high density of elements is needed to give acceptable results; this leads to

π
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increased solver time. Quadratic quadrilateral/hexahedral elements are much better,
but it is difficult to automatically generate all-hexahedral meshes (even allowing tran-
sition elements such as prisms). Quadratic tetrahedra have as good FEM properties as
quadratic hexahedra and do allow automatic mesh generation.

3.2  Mesh generation methods
There are several methods for generation for unstructured meshes discussed in this
chapter

• Decomposition and mapping, which is essentially multiblock with TFI

• Overlaying a regular grid or quadtree/octree grid and warping elements to fit
the boundaries

• Advancing front

• Delaunay triangulation

• Less common methods, hybrid structured/unstructured grids, mesh smoothing

The most popular methods are Delaunay triangulation and advancing front.

3.2.1 Decomposition and mapping

This was the earliest method developed, and is still used in several commercial FEM
packages. The domain is decomposed interactively into regions, as in multiblock for
structured grid generation. Then the individual regions are meshed using some map-
ping method. This can be transfinite interpolation, but a simpler method based on the
shape functions used to define isoparametric finite elements has been used extensively
[18]. The isoparametric interpolation is a point interpolation (i.e., a finite interpola-
tion) and is illustrated here in 2D using a quadratic mapping (parabolic quadrilateral).
In this case the points to be interpolated are at the corners and midpoints of the edges
of the curvilinear quadrilateral (Figure 16) and the interpolation formulas are

where
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Other interpolation formulas (cubic, quartic, etc.,) can be used, and the method
extends to 3D. The quadrilateral can be degenerated to a triangle and edges can be
identified as in C and O type grids.

 Figure 16:  Isoparametric meshing

3.2.2 Grid based methods

In these methods a triangular or rectangular grid is overlaid on the domain, extending
beyond the boundaries. The grid is then cropped to the domain. Finally the edge
points are moved (warped) to the boundary and, if necessary, quadrilaterals are split
into triangles (Figure 17). This method is fast, but gives poor quality grids at the
boundaries, which is usually where high grid quality is required (for boundary layers,
stress concentrations, etc.).

 Figure 17:  Overlaid grid, cropped, warped to boundary and split into triangles

A development of this method is to use a quadtree (Figure 18) in 2D [19] or octree in
3D [20] as the basic grid. This leads to similar problems with the grid at the bounda-
ries. The cropping to the boundary can often be done by the CAD solid modelling
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package used to create the object being meshed. This method (in 3D) is used in some
commercial packages.

 Figure 18:  Quadtree grid, before triangulation and warping

3.2.3 Advancing front

This method is based on a simple idea (Figure 19)

• Discretise the boundary (e.g., in 2D fit it with polygon(s)). This is the initial front.

• Add triangles/tetrahedra into the domain, with (at least) one edge/face on the
front. At each step this will update the front.

• When the front is empty (e.g., in 2D no polygon segments left) the mesh gener-
ation is complete. This requires that the domain be bounded, but for unbounded
domain the front can be advanced until it is at some large distance from the ob-
ject.

Although the idea is simple the algorithmic details of this method are complex. The
method will be illustrated in 2D [21], with comments on the differences for the 3D
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case [22]. In general the advancing front method in 3D is much more sensitive to geo-
metric tolerances and numerical errors (especially for stretched grids) than in 2D.

 Figure 19:  Advancing front

The initial data for the method are the domain boundary, and some mesh parameters
(density, stretching) defined over the domain.

The boundary is made up of closed loops of parameterised curves/surfaces patches
(e.g., generated by the CAD system used to design the object/domain being simu-
lated).

The mesh parameters are the average node spacing  and any directional stretching
factors. The parameters are usually defined on a background grid and the spatial dis-
tribution of mesh parameters is given by (linear) interpolation from values specified
at the nodes. The background grid can be one large triangle/tetrahedron enclosing
the whole domain (e.g. for constant mesh size), or a coarse grid created interactively,
or a grid already used for computation (this is the case for adaptive meshing, using
the inverse of the local error to specify the new local grid size). It is possible to control
the grid size from the boundary discretisation, but this can reduce robustness.

The boundary discretisation quality is important, especially in 3D, where a poor trian-
gulation of the boundary surface can cause very poor 3D meshes. The boundary dis-
cretisation can be set up in physical space, or the parameter space of the curved
segments.

In physical space the parameterisation is effectively the arc length. First compute the

length  of each segment (usually the CAD package can provide this information) and
interpolate the mesh parameters onto each segment, at some large number of sam-
pling points. Then calculate the number of sides required along each segment as

Original front New front

Original front New front

New element

New element

δ

l
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here assuming no stretching. Node positions are at arc lengths  where

takes integer values.

A more general solution is to transform the mesh parameters from physical space to
the CAD parameter space, creating a mesh in the parameter space using formulae
similar to those used above, and then transforming back to get the points on the
boundary.

In 3D the boundary surfaces themselves need to be triangulated to form the initial
front in 3D. Each boundary surface will be represented in the CAD system used to cre-
ate the geometry as a mapping from the plane with some parameterisation ,
either as a concatenation of surface patches (Bezier, Coons, etc) or a a cubic spline sur-
face with a rectangular grid of control points. Even in the case of solid geometry CAD
models a surface representation can be generated. This background surface will inter-
sect other boundary surfaces to give the edges of the volume (represented by cubic
splines, say). Then the 3D curved surface triangulation is achieved by doing a 2D tri-
angulation (see below) in the  parameter space, and transforming to the 3D sur-
face. The edges of the 3D surface can be discretised using the arc length, as in the 2D
case, and the generated points transformed to the  plane. The mesh parameters
also have to be transformed from 3D to the 2D parameter space to control the mesh
generation in the parameter space.

Once the boundary is discretised we have our initial front and element generation can
proceed. We describe one particular algorithm due to Peraire et al. [21]

Choose a front side for the base of the new element, usually the smallest side, call it
AB (Figure 20). This requires a search through the segments on the front, which can be
speeded up by using suitable data structures (heap list ordered by segment length)
although there is then an overhead in maintaining these structures. In the 3D case the
size of the front can easily be 10,000 triangles and in this case (and generally, see
below) suitable data structures are essential for acceptable performance. Also in 3D,
choosing the smallest segment may not be robust. A better choice is the smallest value
of |(desired area based on ) - (actual area of segment)|.

 Figure 20:  New element, initial choice

Interpolate the mesh parameters to midpoint of AB. Again this requires a search, this
time of the background mesh. An alternating digital tree (ADT) [23] or region
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quadtree/octree [24] can be used for the elements of the background grid, allowing
proximity searches in  time.

Then find the position of the ‘ideal’ point C1 as shown in Figure 20, with  given by

These inequalities ensure that no elements with excessive distortion are produced; the
coefficients are empirical. In 3D,  is the distance from the nodes of the segment (tri-

angle) and average side length is used instead of . To prevent very small tetrahe-
dra being formed from small or distorted triangles, a lower limit of  is used.

Now, this new element could lead to poor quality triangles being generated in later
steps (Figure 21), so the all nodes on the current front which are within radius  of

C1 have to be found. Using an ADT or quadtree/octree for the nodes/sides of the

front will speed up the search to  (compared with  in 2D).

 Figure 21:  Poor choice of a new element will lead to distorted elements being produced later.

Other values for this search radius (e.g. ) have been used to increase robustness.
In 3D, the search radius should be small for efficiency, but this doesn’t appear to affect
the quality or robustness (if you can’t get a good tetrahedron form points close-by,
you’re unlikely to get a better one from points far away).

Order these nodes by distance from C1, and add C1, C2, C3, C4, C5 (see Figure 20) at
the end of the list. In 3D, the list ordering strongly affects tetrahedron quality, and a
suitable choice is to order by distance from centroid of the chosen segment (triangle)
of the front. The points C2,..., C5 are to ensure you can form some triangle. In 3D, there
is a new node approximately every 5 tetrahedra, and the optimal node C1 is usually
OK, so only a few alternatives (C2,..., C5) are needed.

The required point is then the first one ( ) for which the triangle  has positive

area (i.e., is on the correct side of the front) and the sides  and  do not cut any

side of the current front. Checking for side-side intersection requires another search
through the front (using an ADT or quadtree/octree for the front will speed this up).
In 3D the actual checking for each side can be very time consuming. The check for
intersection is: 2 faces don’t intersect if no side of either face intersects the other face,
and all side / face combinations need to be tested. Typically there are about 40 close
faces to be checked and using a simple intersection check can lead to 80% of the total
grid generation time being used in the checking phase. Checking bounding box/tetra-
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hedron intersection first to reduce the number of faces requiring the full side/face
checking can reduce this time to 25%.

A variation of the method [25][26] inserts points (on an approximately regular grid) in
the domain first, then advances the front using these points only. The points are well
spaced to give good triangles. This reduces the searching required and removes
almost all intersection checking.

The element generation can fail if there are large variations in mesh size, and the
search radius is too small (see Figure 22), hence the need for C2,..., C5.

 Figure 22:  Element generation failure (side intersection) because of too small a value of search
radius.

Once a valid element has been found, record the new element and update the front by
inserting or deleting sides. The algorithm ends when the front is empty.

In 3D, clusters of ill-shaped segments can cause element generation to fail (locally)
and the solution is to keep a ‘temporarily rejected segments’ queue. Many of the
rejected segments are deleted as the front moves while they are in the rejected queue.
Unfortunately, if these segments are at the last stage of the mesh generation, then
there may be no good segments to use. In this case, the front needs to be back-tracked
by erasing some elements/segments and the generation restarted with looser geome-
try tolerances.

Performance

Since this is a greedy triangulation the only active data is on the front, and the storage

requirements in 2D are  and the time complexity is at most . Most of
the time is spent in searching and suitable data-structures can reduce this. Two suita-
ble structures are the alternating digital tree (ADT) and the (region) quadtree/octree as
discussed above. Using these data structures reduces the time complexity to

. In 3D the time complexity could be  as well, but in practice

this is more like , because the octree used for searching the front for
‘nearby’ points is often unbalanced. If the front advances randomly, the octree will be
well balanced, but if it advances sequentially, the octree will become unbalanced. In
general the performance will depend on the desired grid size, stretching, and domain
shape.

Summary

In the advancing front method nodes and elements are added simultaneously, with
smooth mesh point placement. The method is boundary conforming (the initial front
is the boundary). It can fail when there are large variations in grid spacing. The need
to search for nearby nodes and edges/faces and the complex intersection checking
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mean that the advancing front method is slow. In addition, it is better to add points
rather than elements (2 triangles per point in 2D, 5 tetrahedra per point in 3D, on
average). The Delaunay triangulation method treated in the next section adds points,
has less searching to perform, and has much simpler geometry checking. It is much
faster than the advancing front method and is the preferred method in 3D.

3.2.4 Delaunay triangulation

The Delaunay triangulation of a set of points has a well developed theory [27] (here
triangulation includes ‘tetrahedralisation’ in 3D). The techniques used to generate the
triangulation can obviously be used to generate unstructured meshes.

Given a set of discrete points in the plane, a Voronoi polygon about point  is the
region that is closer to, or as close to,  as any other point. The Voronoi or Dirichlet
tesselation is made up of these Voronoi polygons and the Delaunay triangulation is
the dual of the Dirichlet tesselation. Figure 23 illustrates these concepts.

 Figure 23:  Delaunay triangulation and its dual, the Voronoi or Dirichlet tesselation.

The Delaunay triangulation has two properties that are useful in mesh generation:

• No point is contained in the circumcircle (see Figure 23) of any triangle. This
‘empty circumcircle’ property is used in several Delaunay triangulation algo-
rithms. This property holds in all dimensions; in 3D ‘circumcircle of any trian-
gle’ is replaced with ‘circumsphere of any tetrahedron’.

• In 2D only, of all triangulations, the Delaunay triangulation maximises the min-
imum angle for all triangular elements. Note that what is required for good
quality finite elements is to minimise the maximum angle, but in practical mesh
generators (which generate the points as well as the triangulation) the elements
generated are of good quality. Unfortunately, this max-min angle property is lost
in 3D (and higher dimensions), where very poor quality elements (slivers, Figure
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24) can be formed.

 Figure 24:  Sliver tetrahedron

These can be detected and they and the surrounding tetrahedra can be re-trian-
gulated, but the resulting triangulation is no longer Delaunay.

The Delaunay triangulation is unique except for degenerate distributions of points. In
2D, 4 points on a circle (Figure 25),

 Figure 25:  Degenerate points, 2D

in 3D, 5 points on a sphere. In 3D, 6 points (octahedron) on a sphere can give an
invalid mesh (Figure 26)

 Figure 26:  Degenerate points, 3D

There are many algorithms for Delaunay triangulation [27], mainly in 2D, and the
asymptotic worst case complexity is  in 2D. However, the most used prac-
tical algorithm, applicable in any dimension, is the Bowyer-Watson algorithm
[28][29]. This adds points sequentially into an existing Delaunay triangulation, usu-
ally starting from a very simple triangulation (e.g., one large triangle) enclosing all the
points to be triangulated. The algorithm proceeds as follows

• Add a point to the triangulation

O N Nlog( )
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• Find all existing triangles whose circumcircle contains the new point (Figure 27).
First the triangle which contains the new point has to be found, which is a prox-
imity search taking time  for a suitable data structure (e.g., quadtree/
octree). Then the neighbours of this triangle are searched and then their neigh-
bours, etc., until no more neighbours have the new point in their circumcircle.
This takes, on average, time  but in the worst case the circumcircles of all

the existing triangles contain the new point, taking time .

• Delete these triangles, which creates (always) a convex cavity.

• Join the new point to all the vertices on the boundary of the cavity (Figure 27).

For 3D replace ‘triangle’ with ‘tetrahedron’.

 Figure 27:  Bowyer-Watson triangulation: circumcircles that contain the new point, and the
resulting triangulation

Performance

This has worst case complexity  in 2D, but near  performance has been
reported for mesh generation applications in both 2D and 3D. The poor worst case
performance can be avoided by randomising the order of point insertion.

Point generation

Like all Delaunay triangulation methods, the Bowyer-Watson algorithm assumes that
the points to be triangulated are already known, and so only addresses half of the
mesh generation problem. The points can be pre-generated, say from the vertices of
overlapping structured grids about component parts of the boundary, with some fil-
tering and smoothing of the point distribution to get good triangulations. However,
the most useful method is to generate the points simultaneously with the triangula-
tion, choosing the points to improve the quality of the triangles [30]. Quality is
defined by (e.g.) size of circumcircle relative to the locally required value interpolated
from a background grid. This eliminates large and ill-shaped triangles, and large and
(most) ill-shaped tetrahedra. The algorithm proceeds as follows

• Form an initial triangulation of a box containing the domain (if exterior domain,
can use a bounding circle/sphere).

• Insert the boundary points into this triangulation using the Bowyer-Watson al-
gorithm.

• Order the triangles by their quality, worst first

• Get the first triangle in the list and insert a new point at its circumcentre. This re-
sults in triangulations (eventually) with angles bounded between  and
in 2D; there is no such guarantee in 3D.

• Retriangulate using Bowyer-Watson. Since the chosen triangle will be in the set
of triangles to be deleted, the ‘search for containing triangle’ can be skipped.
However, the insertion/deletion of triangle into the list sorted by quality is

 so there is no overall saving in time.
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• Insert the new triangles in the quality list, if they are still not good enough.

This method has produced very efficient mesh generation code. The mesh is less
smooth than the advancing front method, but the generation is about 10 times faster.
There can be robustness problems, especially in the initial phase when there are
highly distorted elements. A variation, which produces smoother grids, is to generate
the interior points by the advancing front method [31].

Boundaries

So far, little regard has been taken of the boundaries (compare the advancing front
method where the boundary is the initial front). The Delaunay construction triangu-
lates a set of points, and does not necessarily conform to imposed boundary, i.e., fixed
edges (Figure 28)

 Figure 28:  Delaunay triangulation not conforming to a boundary

There are two ways to force the Delaunay triangulation to include the boundary prop-
erly. In 2D is possible to define a constrained Delaunay triangulation [32]. In a con-
strained Delaunay triangulation the pre-defined edges are in the triangulation and the
empty circumcircle property is modified to apply only to points that can be ‘seen’
from at least one node of the triangle, where the pre-defined edges are treated as
opaque. The existence of the constrained Delaunay triangulation guarantees the pos-
sibility of modifying a Delaunay triangulation to include the boundary edges (via
edge-swapping, Figure 29, or more extensive re-triangulation).

 Figure 29:  Edge swapping to give a constrained Delaunay triangulation

In 3D, there appears to be no concept of constrained Delaunay triangulation. It is pos-
sible to recover the boundary edges and faces by using face-edge swapping (Figure

Non-conforming triangles
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30) or more extensive re-triangulation, but generally extra points need to be inserted.
The resulting triangulation is no longer Delaunay.

 Figure 30:  Face-edge swapping

The alternative to constrained triangulation is to make the Delaunay triangulation
conform to the boundary curve/surface (rather than the boundary discretisation) by
adding enough points on the boundary to ensure that the Delaunay triangulation will
include the (small) edges on the surface. Often this leads to elements that are much
smaller than required for the finite element error tolerance, but this technique applies
in all dimensions.

The triangulation can be made boundary conforming either just after the boundary
points have been triangulated or at the end of the Delaunay triangulation process. In
the latter case the (unconstrained) Delaunay triangulation can introduce points near
the eventual boundary, leading to poor quality meshes when the boundary edges/
surfaces are recovered. Making the triangulation boundary conforming just after the
boundary points have been triangulated leads to better quality meshes near the
boundaries. In this case the boundary integrity needs to be maintained throughout
the triangulation process. This is possible in 2D using constrained Delaunay triangu-
lation, but in 3D the mesh will not be Delaunay after boundary recovery, and subse-
quent Delaunay-type point insertions may fail.

In 2D the boundaries can be discretised using methods similar to those used for the
advancing front method. In 3D, the boundary surfaces can be (Delaunay) triangulated
in the flat 2D parameter space of the surfaces, as in the advancing front method.

Summary

Delaunay triangulation is the fastest method for unstructured mesh generation but
boundary conformance needs to be checked/maintained. In 3D, poor quality ele-
ments can be generated and these need to be corrected by local re-triangulation at the
end of the main generation phase.

3.2.5 Other methods

A variety of other methods have been developed for unstructured mesh generation
but they all seem to be still at the ‘research’ stage, with no widespread usage. The fol-
lowing is really just a list of references to these methods.

Paving [33]



36 Technology Watch Report

This is the quadrilateral/hexahedral version of the advancing front method. The algo-
rithm fills the domain by advancing layers of quadrilaterals/hexahedra. Complex col-
lision rules are needed when fronts merge, but the method gives very good elements
at the boundaries.

Whisker weaving/spatial twist continuum [34]

This is an interesting concept, but there appear to be difficulties with implementation.

Hybrid methods

A number of methods combine structured meshes near the boundary and unstruc-
tured meshes elsewhere (see [31] for a review). This give the advantages of boundary-
fitted meshes without the difficulties of multiblock. Related to these approaches are
the advancing layer version of the advancing front method and the advancing normal
method of Delaunay point insertion, both of which give highly structured meshes
near the boundaries.

Other

A variety of other methods are discussed in Ho-Le’s review [35].

3.2.6 Smoothing

The meshes generated by automatic methods are often improved by adjusting the
point positions to give a smoother mesh. The usual method is Laplacian smoothing

where  is the new position of point  and the  are the coordinates of the

points connected to point . Each point is moved to the barycentre of the points con-
nected to it and after 2-5 iterations the process converges. Only minor irregularities
can be smoothed, and in some cases (Figure 31) the smoothing can give negative
area/volume elements which need to be corrected (‘un-smoothed’).

 Figure 31:  Failure of Laplacian smoothing
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4  Adaptive Meshing

This chapter is a very brief introduction to adaptive meshes (see, for example, [31], [36],
[37]).

4.1  Adaptive meshes
In the previous chapters we have dealt with techniques to generate structured and
unstructured meshes, given some specified grid density. This grid density is chosen to
give acceptable solution accuracy or acceptable solution time. It is possible to specify
certain aspects of the grid at the start of the computation, e.g., high grid density near
sharp features of the boundary, but the solution may also develop sharp features (e.g.,
shocks in compressible aerodynamics) which cannot be predicted in advance. At
these sharp solution features the grid will need to be refined to give acceptable accu-
racy. In contrast, there can be large areas of the domain in which the solution is very
smooth, where the grid can be coarsened and still lead to acceptable accuracy, with a
decrease in solution time. So using a sequence of meshes that adapt to the solution as
it develops in time (or by iteration for steady-state simulations) can lead to acceptably
accurate results in optimum time.

There are two parts to an adaptive mesh scheme.

• Measurement of the local error and translation to refinement/coarsening. The
measure of error should be based on some technique like Richardson extrapola-
tion, but in practice the solution curvature (e.g., difference between solution and
smoothed solution) or solution gradient (e.g., at shocks) are used. The required
local grid density can then be calculated using the measured/required error and
the local order of the discretisation method. The required distribution of grid
density should equi-distribute the error.

• Re-generating the mesh with the specified grid density distribution. The meth-
od used depends on whether the problem is steady-state or time-dependent. For
steady-state problems a small number of optimum adaptations (e.g., mesh re-
generation) tend to be used. For time-dependent problems, a large number of
adaptations are required as the solution changes. The adaptive meshing must be
fast, and it must be capable of refinement and coarsening (e.g., as fronts move
through the domain). The interpolation from mesh to mesh must be accurate in
the time-dependent case; for steady-state problems this is less important.

There are three methods for refinement: mesh point movement, local refine-
ment, and re-meshing the complete domain. (An alternative to changing the
grid density is to change the local order of the discretisation method, ‘p-refine-
ment’.)

• Mesh movement (r-refinement) maintains the original mesh connectivity,
but moves the mesh nodes. This method can only cope with relatively
small adjustments without introducing very distorted cells, but it allows
refinement/coarsening and is fast. It is very suitable for structured meshes,
which require a fixed connectivity, and also for time-dependent problems,
where speed and the ability to refine and coarsen are important.



38 Technology Watch Report

• Local refinement (h-refinement) sub-divides grid cells [38]. Surrounding
cells will also have to have some degree of subdivision to maintain a valid
mesh (e.g., in 2D, no nodes on triangle edges). This method is fast, allows
coarsening by reversing the sub-division, and enables accurate interpola-
tion between the nested meshes. It is ideal for time-dependent problems.
The mesh connectivity is changed, so this method is only suitable for
unstructured meshes.

• Mesh generation with new density parameters. This is the most general
method, but it is slow, and there is no simple way to reverse the refinement.
With Delaunay triangulators, extra points can be added to the existing tri-
angulation to refine the mesh.

4.2  Parallel mesh generation
Adaptive mesh generation leads naturally to mesh generation in parallel: when the
solution method is implemented on parallel computers, evidently the adaptive mesh-
ing needs to be implemented in parallel as well. Later revisions of this document will
include an overview of parallel meshing techniques; more information can be found
in [39] for structured meshes and [36], [40] for unstructured meshes.
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