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Abstract. This paper describes an algorithm for generating unstructured triangulations for arbitrarily shaped two-
dimensional regions. The algorithm works for regions without cracks, as well as for regions with one or multiple
cracks. The algorithm incorporates aspects of well-known meshing procedures and includes some original steps.
It includes an advancing front technique, which uses an quadtree procedure to develop local guidelines for the size
of generated elements. The advancing front technique is based on a standard procedure found in the literature, to
improve mesh quality (as far as element shape is concerned), an a posteriori local mesh improvement procedure is
used.

1 Introduction

This paper describes an algorithm for generating triangu-
lar meshes for arbitrarily shaped two-dimensional regions.
The algorithm was devised in the context of finite-element
modeling for crack propagation simulation1.

The algorithm works for regions without cracks, as well
as for regions with one or multiple cracks. The cracks may
be embedded or surface breaking. The algorithm is an adap-
tation of an algorithm for generating unstructured meshes
for arbitrarily shaped three-dimensional regions [1].

The algorithm was designed to meet four specific re-
quirements. First, the algorithm should produce well-
shaped elements, avoiding elements with poor aspect ratio,
whenever possible. While the algorithm does not guarantee
bounds on element aspect ratios, care is taken at each step
to generate the best shaped elements possible.

The second requirement is that the algorithm generates
a mesh that conforms to an existing discretization on the
boundary of the region. This is important in the context
of crack growth simulation because it allows remeshing to
occur locally in a region near a growing crack. That is, a
relatively small number of elements near the crack can be
deleted creating a void in the mesh. The crack is extended,

1Cracks may be considered as discontinuities in the domain of a body.
They are usually induced by flaws in the manufacturing or construction
process of a structure or equipment in conjunction with stress concentra-
tion.

and then this algorithm can be used to generate new ele-
ments that fill the void, and conform to the elements that
were not removed. The remeshed zone is small and lo-
calized, leading to fast mesh generation and, for nonlinear
problems, minimizes the amount of state information that
needs to be mapped between an old and new mesh.

The third requirement of the algorithm is that it has the
ability to transition well between regions with elements of
very different sizes. In a crack analysis, it is not uncom-
mon for the elements near the crack front to be two orders
of magnitude smaller than other elements in the problem.
Some other algorithms work best when all generated ele-
ments have similar characteristic size [2]. This is clearly
unacceptable for the crack case, and the current algorithm
has been designed to have good size transition capabilities.

The fourth requirement arises because cracks are usually
idealized as having no volume. That is, the surfaces repre-
senting the two-sided of a crack edge are distinct, but ge-
ometrically coincident. This means that nodes on opposite
sides of crack faces may have identical coordinates. The
algorithm must be able to discriminate between the nodes
and select the one on the proper crack edge.

The body of this paper is divided into two main sec-
tions. The following section describes the steps of the
algorithm in some detail. In Section 3 comparisons are
made between the proposed algorithm and other algorithms
based on quadtree in relation to the quality of the generated



meshes and processing time.

2 Description of the algorithm

The proposed algorithm incorporates aspects of well-
known meshing procedures and includes some original
steps. It includes an advancing front technique, but uses an
quadtree procedure to develop local guidelines for the size
of generated elements. The advancing front technique is
based on a standard procedure found in the literature [2–4].
To improve mesh quality (as far as element shape is con-
cerned), an a posteriori local mesh improvement procedure
is used.

The input to the algorithm is described by a list of nodes
defined by their coordinates and a list of edges defined by
their node connectivity. This type of input has some aspects
to be considered: it can represent geometries of any shape,
including holes and cracks, and it can be easily incorporated
into any finite element system.

The algorithm is organized in the following phases:

� Quadtree generation

– Initialization based on discretization boundary

– Refinement to force a maximum cell size

– Refinement to provide minimum size disparity
for adjacent cells

� Advancing front procedure

– Geometry-based element generation

– Topology-based element generation

� Local mesh improvement

– Laplacian smoothing

– Quality evaluation and local back-tracking with
element deletion

2.1 Quadtree generation

As mentioned above, the primary purpose for the quadtree
is to generate guidelines for the size of the element gen-
erated during the advancing front procedure. The element
size distribution through the region is inferred by the size
distribution in the input boundary.

The quadtree generation involves three steps. In the first
step, the quadtree is initialized based on the input data. In
the other two steps, the quadtree is further refined. Figures
1 to 4 are used to illustrate the process of generating the
quadtree.

Figure 1: Hypothetical model and its boundary refinement.

Figure 2: Initial quadtree of model.

2.1.1 Quadtree initialization based on discretization
boundary

Initially, a bounding box is created based on the maximum
range of any of the two cartesian coordinates of the nodes in
the input data. This is the root cell of the quadtree. Figure 1
illustrates an hypothetical input data, representing a model
and its boundary refinement. This model has an edge crack
on its right hand side. At the crack tip, the boundary is
contracted as if it had specially placed crack-tip elements.
The boundary model presents an increasing degree of re-
finement from the left side to the right side.

In the first step of the quadtree generation, represented
by the initialization of the quadtree, each segment of the
input boundary data is used to determine the local depth



Figure 3: Quadtree of model after forcing largest cell size
at boundary.

of subdivision. The quadtree cell containing the midpoint
of each input segment is determined. If the length of this
cell’s edge is larger than the length of the boundary edge,
then this cell is subdivided into four smaller cells. This
process is repeated recursively and finishes when the length
of the cell’s edge is smaller than a factor of the length of the
boundary segment. In this implementation a factor of 1.0
was used to avoid the excessive refinement in the quadtree
generation [5,6]. Other algorithms use values different than
1.0 [1]. This process is repeated for all segments of the
input data. The result is illustrated in Figure 2.

2.1.2 Quadtree refinement

The previous step can leave large quadtree cells in the inte-
rior of the region. In a second step, the quadtree is refined to
guarantee that no cell in the interior is larger than the largest
cell at the boundary. This will avoid excessive big elements
in the domain interior. Figure 3 shows the quadtree gener-
ated after this operation.

2.1.3 Refinement to provide minimum size disparity
for adjacent cells

The quadtree is further processed in a third step, to force
only one level of refinement between neighboring cells.
This enforces a natural transition between regions of dif-
ferent degrees of refinement. This operation is performed
traversing the quadtree and examining the level of refine-
ment between adjacent cells. If the difference is more than
one level, then the appropriate cells are refined until the cri-
terion is satisfied. Figure 4 shows the quadtree generated

Figure 4: Quadtree of model after forcing maximum of one
level of difference.

after this procedure.

2.2 Advancing front technique

The advancing front technique starts with a boundary that
bounds a region to be filled with a triangulation. Triangular
elements are “extracted” or “pared” from the region one at a
time. As each element is extracted, the boundary is updated
and the process is repeated. The procedure terminates when
the entire region is meshed. Therefore, the boundary of the
region to be meshed is formed by edges of triangles created
in the contration process. These edges are referred to as
boundary edges.

In this algorithm, the advancing front process is divided
into two phases to ensure generation of valid triangulations.
In the first phase, a geometry-based element generation is
pursued to generate element of optimal shapes. After this
ideal phase is exhausted, and no more optimal elements can
be generated, a topology-based element generation takes
place, creating valid, but not necessarily well shaped, el-
ements in the remaining region.

2.2.1 Geometry-based element generation

Ideally, the entire mesh would be generated in the
geometry-based phase. This depends on the geometry and
topology of the given boundary model and, as observed, is
strongly related to the segment size disparity of the given
boundary refinement.

a) Boundary contraction lists
The process starts with the creation of the initial advanc-



Figure 5: The determination of a triangle.

ing front, which is formed by the given boundary seg-
ments. The current boundary edges are stored in two sep-
arate doubly-linked lists. The first is a list of active edges,
which includes all boundary edges that have not been used
in an attempt to generate valid triangles. The other is a list
of rejected edges, that is, with the edges that failed in the
generation of elements for the current phase. Initially, all
segments of the given boundary refinement are stored in
the first list, which is the list used in the geometry-based
generation phase.

The initial list of active edges on boundary is sorted by
the length of the edges. This has been recommended by
other authors [7] to prevent large elements from penetrating
into regions with small length edges.

It was also found convenient for some steps in the algo-
rithm to have an additional data structure that holds a list of
adjacent boundary edges for each node on the current ad-
vancing front. This data structure is initialized for all the
nodes of the given boundary. The data structure is updated
as the boundary contraction procedure progresses.

b) Generation of optimal elements
In the geometry-based element generation phase, the cur-
rent boundary advances trying to form triangle based
mainly on geometrical considerations. At each step, an
edge, referred to as base edge, is chosen from the list of
active edges.

The procedure for generating a triangle in this phase is
explained by means of Figure 5. This procedure is divided
into the following steps:

� The optimal location N1 for the vertex of the trian-
gle to be formed is determined with the help of the
quadtree. The quadtree cell containing the midpoint
M of the base edge is determined. The optimal point
N1 lies on a line perpendicular to the base edge pass-
ing through this midpoint. The distance from the op-
timal point to the base edge midpoint is equal to the
quadtree cell size.

� The optimal point defines an optimal region where the

Figure 6: The definition of a angle for a vertex i.

vertex of triangle to be generated is located. This re-
gion is a sector of circle whose center is the optimal
point and whose radius is proportional to the quadtree
cell size. In the current implementation a factor of 0.85
was adopted. This circle defines an upper bound for
the distance between the target vertex of the triangle
and the centroid of the base edge. A lower bound is
defined to ensure that the generated triangle will have
area greater than the smallest acceptable area. In the
current implementation, this lower bound is defined by
a triangle with height equal to 1/10 of base edge. The
optimal region is used for two reasons. First, to ensure
shape quality of the elements to be generated and, sec-
ond, to ensure that new internal nodes will be created
only when it is strictly necessary and always in good
positions.

� If no existing node is inside the optimal region, a new
node is inserted at the optimal location N1 and an el-
ement is generated using this node. If only one node
exists in the region, this node is used to generate the
element. If more than one node is found in the region,
they are ranked according to the angle that they will
create with the base edge (Figure 6). A heap list is
used to efficiently rank the nodes. The node that will
create the largest angle is used to generate the element.

� Additional geometric checks are performed to insure
that the edges of the new element do not intersect any
existing edge of the advancing front. If this is the case,
the element is rejected.

� For crack problems there may be two or more nodes
with the same coordinates. Figure 7 illustrates this.
The algorithm selects the proper node using a simple
test, which is based on the lists of adjacent boundary
edges of the nodes on the advancing front. When two
candidate nodes at the crack surface are selected to
form an element, the node which lies on the same side
of the base edge with respect to the crack edge is cho-



Figure 7: Selection of a candidate node at a crack edge.

sen. The normals to the crack curves adjacent to the
select nodes are used to perform this test, as illustrated
in Figure 7. This check assumes that all crack curves
are smooth (with no abrupt change of direction and
with no bifurcation, which it is not really a limitation
in practical applications).

� Once a valid triangle is generated for the current base
edge, the list of active edges is updated. This is done
through the following steps. First, the base edge is
removed from the list. Then, for the other edges of the
element: each edge is deleted if it coincides with an
edge already in the list, or the edge is inserted in the
list as a new one.

� Due to geometric bounds imposed by the current ad-
vancing front, there are situations in which the algo-
rithm fails in forming a valid triangle for the current
boundary base edge. In these cases, the current base
edge is removed from the list of active edges and is
stored in the separate list of rejected edges. It might
happen that an edge is subsequently removed from this
latter list if it is used to form part of a valid triangle for
an adjacent base edge.

� When there is no more edge in the list of active
edges, the algorithm tries to generate elements using
the edges that were rejected previously. It may be the
case that base edges that failed previously may now
work because the front has changed with the addition
of elements. The geometry-based element generation
phase ends when either there are no edges left in the
boundary contraction lists (in which case an optimal
mesh was generated) or when a rejected edge fails a
second time.

2.2.2 Topology-based element generation

The objective of this phase of the algorithm is to force the
generation of valid triangle, even if the new elements do not
satisfy the bounds used in the previous phase for element
shapes.

Figure 8: First mesh generated for the example.

The topology-based element generation phase starts
when a boundary edge fails twice in trying to generate an
optimal element. The list of rejected edges of the previous
phase is transformed into an list of active edges and, sim-
ilarly to the geometry-based phase, a list of rejected edges
is created for edges that eventually fail in generating valid
triangle.

In the topology-based element generation phase, any
node close to the current base edge is selected and stored
in the local heap list of candidate nodes. The node that has
the best angle metric with respect to the base edge is cho-
sen for the generation of the new triangle. If the edges of
this triangle do not intercept any other edge of the current
advancing front, the element is created and the boundary
is accordingly contracted. The topology-based phase ends
when the lists of active and rejected edges are empty. This
phase always generates a valid mesh (although not optimal)
because it is always possible to triangulate a region that is
defined by its boundary edges [8]. Figure 8 shows the mesh
of the example model after this phase.

2.3 Local mesh improvement

In the last phase of the advancing front technique described
previously, triangular finite elements of non-optimal shapes
might be generated. This section describes two a posteri-
ori local mesh procedures that take place to improve mesh
quality. The first is a conventional nodal relocation smooth-
ing technique, which is based on node coordinates averag-
ing. The second is a back-tracking procedure that deletes
edges of “bad” shape elements to create a region where el-
ements with better shape can be generated.

The local mesh improvement procedures imply that ele-
ment shape quality measures are necessary. In this work a
quality shape metric was adopted based on a comprehen-
sive study on finite element shape quality [9–19]. In this



case, the adopted quality measure is a normalized ratio be-
tween the root mean square of the lenghts of the edges of a

triangle (Srms =
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This metric presents a good quality expressivity and is com-
putationally efficient. The metric used in this work is the
ratio 
=
�, where 
� is the metric for equilateral triangle.
The range of valid values varies from one to infinity [1;1).

2.3.1 Laplacian smoothing

A smoothing technique is used to improve mesh quality
by relocating nodes within a patch. A general formulation
for this technique is given through equation (2), which is a
generic form of a weighted Laplacian function (Foley et al.,
1990):
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In equation (2), m is the number of nodes connected to
node O, Xn+1

O
is the position of node O at smoothing iter-

action n + 1, !iO is the weighted function between nodes
i and O, and � is a relaxation parameter which is normally
set in the interval (0; 1]. In this work, a value of � = 0.5
and !iO = 1 were adopted, resulting in a simple average of
nodes. The smoothing procedures is repeated 5 times.

2.3.2 Quality evaluation and local back-tracking with
element deletion

The Laplacian smoothing is not sufficient to guarantee
mesh quality. In this work, a back-tracking procedure is
adopted to improve the quality of a generated mesh. This
technique can also be used for any given mesh that is not
related to the current meshing algorithm. This can be help-
ful in improving the quality of meshes obtained by other
approaches.

The back-tracking procedure consists of deleting an el-
ement that is classified as a poorly shaped element and a
group of elements in its vicinity. The classification of “bad”
triangle is based on a specified measure, which in this work
is the 
=
� metric described previously. For each element
of the generated mesh, the quality measure 
=
� is evalu-
ated. If the value of this metric is above a pre-defined limit
value, the element is classified as a poorly shaped element.
The limit value is defined empirically based on experiments
and observations. In this work, the adopted value is 1.5.
The back-tracking procedure, however, can be applied for
any quality measure and for any limit value used to define
a “bad” element.

Figure 9: Back-tracking procedure to remesh around a
“bad” element.

The objective of the back-tracking procedure is to delete
element edges surrounding a “bad” element to create a local
polygon that can be remeshed with better shape elements. A
local polygon to be meshed is created by an algorithm that
is defined through the following steps. This is illustrated by
means of Figure 9:

� Step 1: creation of a initial list of adjacent nodes. For
each element that is adjacent to the poorly shaped ele-
ment (the gray element of Figure 9), store its nodes in
the list. An adjacent element is an element that shares
two nodes (an edge) with the “bad” element.

� Step 2: creation of an extended list of adjacent nodes.
The additional nodes are the ones that share more than
one element with nodes of the initial list of Step 1.
That step was incorporated because it was seen that it
that results in polygons with better shapes for recon-
struction.

� Step 3: creation of a list of elements to be deleted.
These elements are defined by having three nodes in
the extended list of adjacent nodes.

� Step 4: creation of the local polygon to be remeshed.
For each element to be deleted, each of its edges is
inserted in the polygon boundary if it is not there yet,
otherwise the edge is removed.

After the creation of the local polygon, elements are gen-
erated by applying of the advancing front algorithm proce-
dures described previously.

The back-tracking procedure followed by element regen-
eration, similarly to the smoothing technique, is applied a
number of times (5 times). In this work, the smoothing
technique was used in conjunction with the back-tracking
procedure. It was observed that better results are obtained
if back-tracking/regeneration is applied after each step of
smoothing. Figure 10 shows the final mesh generated for
the example.



Figure 10: Final mesh generatated for the example.

3 Comparison with other quadtree algorithms

In this section, comparisons are made between the pro-
posed algorithm and other algorithms based on quadtree
in relation to the quality of the generated meshes and to
processing time. The algorithms used for that comparison
are: Vianna [20], based on Constrained Delaunay Triangu-
lation [2, 15, 21], and Cavalcante Neto [6], based on trian-
gulation by a quadtree technique with templates [22, 23].

The measured time does not include the time required to
build the input data. The computer used in this operation
was a 200 MHz Intel PC with 32 Megabytes of RAM, and
running Windows 95.

The quality of generated meshes was measured with the
normalized metric 
=
�. This metric has a valid interval
between 1.0 and infinity, and the value for the equilateral
triangle is 1.0. It is desirable to have elements with values
close to 1.0.

The following models were used in the comparisons: a
square with 60 segments on each side; a circle with 120
segments; a stand illustrated in Figure 11 (the figure indi-
cates the numbers of segments of each edge); and a frame
illustrated in Figure 12. The number of generated elements
for each model is presented in Table 1. Figures 13 to 16
show the generated meshes for the models.

Table 2 presents the processing time of each model. Ta-
ble 3 presents the number of generated elements per sec-
ond. One way verify that the proposed algorithm is faster
than the other algorithms.

The quality of generated meshes are presented in the
form of histograms in Figures 17 to 20. In the histograms,
the horizontal axis represents the normalized metric in in-
tervals of 0.1. The vertical axis represents the percentage of
elements corresponding to the intervals of the metric. In all
models used in the comparisons of mesh quality, the pro-
posed algorithm had the best meshes.

Figure 11: Example of a stand model.

Figure 12: Example of a frame model.

Figure 13: Mesh for the square model.



Figure 14: Mesh for the circle model.

Figure 15: Mesh for the stand model.

Figure 16: Mesh for the frame model.

Table 1: Comparison of number of generated elements.

Table 2: Comparison of processing times (s).

Table 3: Comparison of number of generated elements per
second.



Figure 17: Histogram of element quality for the square
model.

Figure 18: Histogram of element quality for the circle
model.

Figure 19: Histogram of element quality for the stand
model.

Figure 20: Histogram of element quality for the frame
model.

4 Conclusions

An algorithm for generating unstructured triangulation for
arbitrary shaped two dimensional regions was described.
The algorithm incorporates aspects of well known meshing
procedures and includes some original steps. The algorithm
works for regions without cracks as well as for regions with
one or multiple cracks. The cracks may be embedded or
surface breaking. The algorithm was designed to meet four
specific requirements.

� It should avoid producing elements with poor aspect
ratios.

� It can generate meshes that conform to an existing dis-
cretization on the boundary of a domain.

� It generates meshes that exibit good transitions be-
tween regions of different element sizes.

� It works properly for cases where distinct boundary
nodes are geometrically coincident (e.g. nodes on op-
posite edges of a crack).

The input to the algorithm is a list of nodes defined
by their coordinates and a list of segments defined by
their node connectivity, which describes the domain to be
meshed. The steps in the algorithm are as follows:

� An quadtree is generated to control the distribution of
node points generated in the interior.

� A two-pass advancing front procedure is used to gen-
erate elements. On the first pass, elements are gener-
ated based on geometrical criteria, which produce well
shaped elements. On the second pass, elements are
generated based only on the criterion that they have
valid topology.



� The quality of the elements shapes is improved by the
use of standard Laplacian smoothing and by locally
deleting poorly shaped elements and those adjacent to
them, and then restarting the boundary contration.

Four models were presented to compare the quality of
generated meshes and processing time of the proposed
algorithm with other quadtree-based algorithms. It was
shown that the proposed algorithm generate meshes with
good quality and efficient processing time.
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