Journal of Universal Computer Science, vol. 10, no. 7 (2004), 910-925
submitted: 16/2/04, accepted: 21/6/04, appeared: 28/7/04 © J.UCS

Coroutines in Lua

Ana Lucia de Moura
(Catholic University of Rio de Janeiro, Brazil
ana@inf.puc-rio.br)

Noemi Rodriguez
(Catholic University of Rio de Janeiro, Brazil
noemi@inf.puc-rio.br)

Roberto Ierusalimschy
(Catholic University of Rio de Janeiro, Brazil
roberto@inf.puc-rio.br)

Abstract: After a period of oblivion, a renewal of interest in coroutines is being ob-
served. However, most current implementations of coroutine mechanisms are restricted,
and motivated by particular uses. The convenience of providing true coroutines as a
general control abstraction is disregarded. This paper presents and discusses the corou-
tine facilities provided by the language Lua, a full implementation of the concept of
asymmetric coroutines. It also shows that this powerful construct supports easy and
succint implementations of useful control behaviors.

Key Words: coroutines, control structures, generators, Lua language
Category: D.3.3

1 Introduction

The concept of a coroutine is one of the oldest proposals for a general control
abstraction. It is attributed to Conway [Conway, 1963], who described coroutines
as “subroutines who act as the master program”, and implemented this construct
to simplify the cooperation between the lexical and syntactical analysers in a
COBOL compiler. Marlin’s doctoral thesis [Marlin, 1980], widely acknowledged
as a reference for this mechanism, resumes the fundamental characteristics of a
coroutine as follows:

— “the values of data local to a coroutine persist between successive calls”;

— “the execution of a coroutine is suspended as control leaves it, only to carry
on where it left off when control re-enters the coroutine at some later stage”.

The aptness of the concept of a coroutine to express several useful con-
trol behaviors was perceived and explored during some years in a num-
ber of contexts, such as concurrent programming, simulation, text process-
ing, artificial intelligence, and various kinds of data structures manipula-

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua 911

tion [Marlin, 1980, Pauli and Soffa, 1980]. Nevertheless, the convenience of pro-
viding a programmer with this powerful control abstraction has been dis-
regarded by designers of general-purpose languages, with rare exceptions
such as Simula [Birtwistle et al., 1976], BCPL [Moody and Richards, 1980],
Modula-2 [Wirth, 1985], and Icon [Griswold and Griswold, 1996].

The absence of coroutine facilities in mainstream languages can be partly
attributed to the lacking of an uniform view of this concept, which was never
precisely defined. Moreover, most descriptions of coroutines found in the liter-
ature, Marlin’s thesis included, are still based on Simula, a truly complex im-
plementation of coroutines that contributed to the common misconception that
coroutines are an “awkward” construct, difficult to manage and understand.

After a period of oblivion, we can now observe a renewal of interest in some
forms of coroutines, notably in two different groups. The first group corresponds
to developers of multitasking applications, who investigate the advantages of co-
operative task management as an alternative to multithreading environments
[Adya et al., 2002, Behren et al., 2003]. In this scenario, the concurrent con-
structs that support cooperative multitasking are usually provided by libraries or
system resources like Window’s fibers [Richter, 1997]. It is worth noticing that,
although the description of the concurrency mechanisms employed in those works
is no more than a description of the coroutine abstraction, the term coroutine is
not even mentioned.

Another current resurgence of coroutines is in the context of scripting lan-
guages, notably Lua, Python and Perl. Python [Schemenauer et al., 2001] has
recently incorporated a restricted form of coroutines that permits the develop-
ment of simple iterators, or generators, but are not powerful enough to implement
interesting features that can be written with true coroutines, including user-level
multitasking. A similar mechanism is being proposed for Perl [Conway, 2000]. A
different approach was followed by the designers of Lua, who decided on a full
implementation of coroutines.

The purpose of this work is to present and discuss the coroutine facilities pro-
vided by Lua. Section 2 gives a brief introduction to the language and describes
its coroutine facilities, providing an operational semantics for this mechanism.
Section 3 illustrates the expressive power of Lua asymmetric coroutines by show-
ing some relevant examples of their use. Section 4 discusses coroutines in some
other languages. Section 5 presents our conclusions.

2 Lua Coroutines

Lua [lerusalimschy et al., 1996, Figueiredo et al., 1996] is a lightweight scripting
language that supports general procedural programming with data description
facilities. It is dynamically typed, lexically scoped, interpreted from bytecodes,

912 de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua

and has automatic memory management with garbage collection. Lua was orig-
inally designed, and is typically used, as an extension language, embedded in a
host program.

Lua was designed, from the beginning, to be easily integrated with software
written in C, C4++, and other conventional languages. Lua is implemented as a
small library of C functions, written in ANSI C, and compiles virtually unmod-
ified in all currently available plataforms. Along with the Lua interpreter, this
library provides a set of functions (the C API) that enables the host program
to communicate with the Lua environment. Through this API a host program
can, for instance, read and write Lua variables and call Lua functions. Besides
allowing Lua code to extend a host application, the API also permits the exten-
sion of Lua itself by providing facilities to register C functions to be called by
Lua. In this sense, Lua can be regarded as a language framework for building
domain-specific languages.

Lua implements the concept of asymmetric coroutines, which are commonly
denoted as semi-symmetric or semi-coroutines [Marlin, 1980, Dahl et al., 1972].
Asymmetric coroutine facilities are so called because they involve two types of
control transfer operations: one for (re)invoking a coroutine and one for sus-
pending it, the latter returning control to the coroutine invoker. An asymmetric
coroutine can be regarded as subordinate to its caller, the relationship between
them being similar to that between a called and a calling routine. A different
control discipline is implemented by symmetric coroutine facilities, which provide
a single transfer operation for switching control to the indicated coroutine. Be-
cause symmetric coroutines are capable of passing control between themselves,
they are said to operate at the same hierarchical level. The following arguments
justify why Lua offers asymmetric coroutines, instead of providing symmetric
facilities or both mechanisms.

It has been argued that symmetric and asymmetric coroutines have no equiv-
alent power, and that general-purpose coroutine facilities should provide both
constructs [Marlin, 1980, Pauli and Soffa, 1980]. However, it is easy to demon-
strate that symmetric coroutines can be expressed by asymmetric facilities (see
Appendix A). Therefore, no expressive power is lost if only asymmetric corou-
tines are provided. (Actually, implementing asymmetric coroutines on top of
symmetric facilities is equally simple). Implementing both abstractions only com-
plicates the semantics of the language. In Simula, for instance, the introduction
of semicoroutines led to problems in understanding the details of coroutine se-
quencing, and several efforts to describe the semantics of Simula coroutines were
shown to be inconsistent [Marlin, 1980].

Since expressive power is not an issue, preserving two of the main char-
acteristics of the Lua, simplicity and portability, constitutes the main reason
for implementing asymmetric facilities. Most programmers nowadays have al-

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua 913

ready been exposed to the the concept of a thread, which, like a coroutine,
represents a line of execution that can be interrupted and later resumed at the
point it was suspended. Nevertheless, coroutine mechanisms are frequently de-
scribed as difficult to understand. In fact, handling explicitly the sequencing
between symmetric coroutines is not an easy task, and requires a considerable
effort from the programmer. Even experienced programmers may have difficul-
ties in understanding the control flow of a program that employs a moderate
number of symmetric coroutines. On the other hand, asymmetric coroutines
truly behave like routines, in the sense that control is always transfered back
to their callers. Since even novice programmers are familiar with the concept of
a routine, control sequencing with asymmetric coroutines seems much simpler
to manage and understand, besides allowing the development of more struc-
tured programs. A similar argument is used in proposals of partial continua-
tions that, like asymmetrical coroutines, can be composed like regular functions
[Danvy and Filinski, 1990, Queinnec and Serpette, 1991, Hieb et al., 1994].

The other motivation for implementing asymmetric coroutines was the need
to preserve Lua’s ease of integration with its host language (C) and also its
portability. Lua and C code can freely call each other; therefore, an application
can create a chain of nested function calls wherein the languages are interleaved.
Implementing a symmetric facility in this scenario imposes the preservation of
C state when a Lua coroutine is suspended. This preservation is only possible
if a coroutine facility is also provided for C; but a portable implementation of
coroutines for C cannot be written. On the other hand, we do not need coroutine
facilities in C to support Lua asymmetric coroutines; all that is necessary is a
restriction that a coroutine cannot yield while there is a C function in that
coroutine stack.

2.1 Lua Coroutine Facilities

Lua coroutine facilities provide three basic operations: create, resume, and
yield. Like in most Lua libraries, these functions are packed in a global table
(table coroutine).

Function coroutine.create creates a new coroutine, and allocates a sepa-
rate stack for its execution. It receives as argument a function that represents the
main body of the coroutine and returns a coroutine reference. Creating a corou-
tine does not start its execution; a new coroutine begins in suspended state with
its continuation point set to the first statement in its main body. Quite often,
the argument to coroutine.create is an anonymous function, like this:

co = coroutine.create(function() ... end)

Lua coroutines are first-class values; they can be stored in variables, passed as
arguments and returned as results. There is no explicit operation for deleting a

914 de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua

Lua coroutine; like any other value in Lua, coroutines are discarded by garbage
collection.

Function coroutine.resume (re)activates a coroutine, and receives as its
required first argument the coroutine reference. Once resumed, a coroutine starts
executing at its continuation point and runs until it suspends or terminates. In
either case, control is transfered back to the coroutine’s invocation point.

A coroutine suspends by calling coroutine.yield; in this case, the corou-
tine’s execution state is saved and the corresponding call to coroutine.resume
returns immediately. By implementing a coroutine as a separate stack, Lua al-
lows calls to coroutine.yield to occur even from inside nested Lua functions
(i.e., directly or indirectly called by the coroutine main function). The next time
the coroutine is resumed, its execution will continue from the exact point where
it suspended.

A coroutine terminates when its main function returns; in this case, the
coroutine is said to be dead and cannot be further resumed. A coroutine also
terminates if an error occurs during its execution. When a coroutine termi-
nates normally, coroutine.resume returns true plus any values returned by
the coroutine main function. In case of errors, coroutine.resume returns false
plus an error message.

Like coroutine.create, the auxiliary function coroutine.wrap creates a
new coroutine, but instead of returning the coroutine reference, it returns a
function that resumes the coroutine. Any arguments passed to that function
go as extra arguments to resume. The function also returns all the values re-
turned by resume, except the status code. Unlike coroutine.resume, the func-
tion does not catch errors; any error that ocurrs inside a coroutine is propagated
to its caller. A simple implementation of function wrap using the basic functions
coroutine.create and coroutine.resume is illustrated next:

function wrap(f)
local co = coroutine.create(f)
return function(v)
status, val = coroutine.resume(co, V)
if status then return val
else error(val)
end
end
end

Lua provides a very convenient facility to allow a coroutine and its caller to
exchange data. As we will see later, this facility is very useful for the implemen-
tation of generators, a control abstraction that produces a sequence of values,
each at a time. As an illustration of this feature, let us consider the coroutine
created by the following code:

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua 915

co = coroutine.wrap(function(a)
local ¢ = coroutine.yield(a + 2)
return c * 2
end)

The first time a coroutine is activated, any extra arguments received by
the correspondent invocation are passed to the coroutine main function. If, for
instance, our sample coroutine is activated by calling

b = co(20)

the coroutine function will receive the value 20 in a. When a coroutine suspends,
any arguments passed to function yield are returned to its caller. In our ex-
ample, the coroutine result value 22 (a + 2) is received by the assignment b =
co(20).

When a coroutine is reactivated, any extra arguments are returned by the
corresponding call to function yield. Proceeding with our example, if we reac-
tivate the coroutine by calling

d =co(b + 1)

the coroutine local variable ¢ will get the value 23 (b + 1).

Finally, when a coroutine terminates, any values returned by its main func-
tion go to its last invocation point. In this case, the result value 46 (¢ * 2) is
received by the assignment d = co(b + 1).

2.2 An Operational Semantics for Lua Asymmetric Coroutines

In order to clarify the details of Lua asymmetric coroutines, we now develop
an operational semantics for this mechanism. This operational semantics is par-
tially based on the semantics for subcontinuations provided in [Hieb et al., 1994].
We start with the same core language, a call-by-value variant of the A-calculus
extended with assignments. The set of expressions in this core language (e) is in
fact a subset of Lua expressions: constants (¢), variables (), function definitions,
function calls, and assignments:

e = cla|lze|leelx:=¢
Expressions that denote values (v) are constants and functions:
v — c|Aze

A store 0, mapping variables to values, is included in the definition of the core
language to allow side-effects:

0 : variables — values

916 de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua

The following evaluation contexts (C') and rewrite rules define a left-to-right,
applicative order semantics for evaluating the core language.

C —-0O|Cel|lvC|z:=C

(Cla], 0) = (ClO(x)], 0) (1)
(Cl(Az.e)v], 8) = (Cle], O]z — v]), = & dom(h) (2)
(Clz =], §) = (C[v], O]z — v]), x € dom(h) (3)

Rule 1 states that the evaluation of a variable fills the context with its as-
sociated value in 6. Rule 2 describes the evaluation of applications; in this case,
a-substitution is assumed in order to guarantee that a new variable z is in-
serted into the store. In rule 3, which describes the semantics of assignments, it
is assumed that the variable already exists in the store (i.e., it was previously
introduced by an abstraction).

In order to incorporate asymmetric coroutines into the language, we extend
the set of expressions with labels, labeled expressions and coroutine operators:

e = cla|dze|ee|x:=el|l|l:e|createe|resumeee | yielde

Because labels are used to reference coroutines, we include them in the set of
expressions that denote values

v — c|Aze|l
and extend the definition of the store, allowing mappings from labels to values:
0 : (variables U labels) — wvalues

Finally, the definition of evaluation contexts must incorporate the new expres-
sions:

C — O|CelvC|z:=C|
create C' | resume C e | resumel C | yieldC |1 : C

We can now develop rewrite rules that describe the semantics of Lua corou-
tines. Two types of evaluation contexts are used: full contexts (C) and subcon-
texts (C'). A subcontext is an evaluation context that does not contain labeled
contexts (I : C). It corresponds to an innermost active coroutine (i.e., a coroutine
wherein no nested coroutine occurs).

(Clereate v], 8) = (C]i], O]l — v]), | & dom(6) (4)
(Clresumelv], 0y = (C[l : 0(1) v], O]l — L]) (5)
(Cr[l : Colyield v]), 0) = (Ch[v], Ol — Az.Ca[x]]) (6)
(ClL:v], 0) = (Cl], 6) (7)

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua 917

Rule 4 describes the action of creating a coroutine. It creates a new label to
represent the coroutine and extends the store with a mapping from this label to
the coroutine main function.

Rule 5 shows that the resume operation produces a labeled expression, which
corresponds to a coroutine continuation obtained from the store. This continua-
tion is invoked with the extra argument passed to resume. In order to prevent the
coroutine to be reactivated, its label is mapped to an invalid value, represented
by L.

Rule 6 describes the action of suspending a coroutine. The evaluation of the
yield expression must occur within a labeled subcontext (C%), resulting from the
evaluation of the resume expression that invoked the coroutine; this guarantees
that a coroutine returns control to its correspondent invocation point. The con-
tinuation of the suspended coroutine is saved in the store. This continuations is
represented by a function whose main body is created from the corresponding
subcontext. The argument passed to yield becomes the result value obtained
by resuming the coroutine.

The last rule defines the semantics of coroutine termination, and shows that
the value returned by the coroutine main body becomes the result value obtained
by the last activation of the coroutine.

3 Programming With Lua Asymmetric Coroutines

Lua asymmetric coroutines are an expressive construct that permits the imple-
mentation of several control paradigms. By implementing this abstraction, Lua
is capable of providing convenient features for a wide range of applications, while
preserving its distinguishing economy of concepts. This section describes the use
of Lua asymmetrical coroutines to implement two useful features: generators and
cooperative multitasking.

3.1 Lua Coroutines as Generators

A generator is a control abstraction that produces a sequence of values, return-
ing a new value to its caller for each invocation. A typical use of generators
is to implement iterators, a related control abstraction that allows traversing a
data structure independently of its internal implementation [Liskov et al., 1977].
Besides the capability of keeping state, the possibility of exchanging data when
transfering control makes Lua coroutines a very convenient facility for imple-
menting iterators.

To illustrate this kind of use, the following code implements a classical ex-
ample: an iterator that traverses a binary tree in pre-order. Tree nodes are
represented by Lua tables containing three fields: key, left and right. Field

918 de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua

key stores the node value (an integer); fields left and right contain references
to the node’s respective children.

function preorder(node)
if node then
preorder (node.left)
coroutine.yield(node.key)
preorder (node.right)
end
end

function preorder_iterator(tree)
return coroutine.wrap(function() preorder(tree) end)
end

Function preorder_iterator receives as argument a binary tree’s root node and
returns an iterator that successively produces the values stored in the tree nodes.
The possibility of yielding from inside nested calls allows an elegant and concise
implementation of the tree iterator. The traversal of the tree is performed by an
auxiliary recursive function (preorder) that yields the produced value directly
to the iterator’s caller. The end of a traversal is signalled by producing a nil
value, implicitly returned by the iterator’s main function when it terminates.

An example of use of the binary tree iterator, the merge of two trees, is
shown next. Function merge receives two binary trees as arguments. It begins
by creating iterators for the two trees (it1 and it2) and collecting their smallest
elements (v1 and v2). The while loop prints the smallest value, and reinvokes
the correspondent iterator for obtaining its next element, continuing until the
elements in both trees are exhausted.

function merge(tl, t2)
local itl = preorder_iterator(tl)
local it2 = preorder_iterator(t2)
local vl = it1Q)
local v2 = it2()

while v1 or v2 do

if vl "= nil and (v2 == nil or v1 < v2) then
print(vl); vi = it1Q)
else
print(v2); v2 = it2()
end
end

end

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua 919

Generators are also a convenient construct for implementing goal-oriented
programming, as in solving Prolog queries [Clocksin and Mellish, 1981] and do-
ing pattern-matching problems. In this scenario, a problem or goal is either a
primitive goal or a disjunction of alternative solutions, or subgoals. These sub-
goals are, in turn, conjunctions of goals that must be satisfied in succession, each
of them contributing a partial outcome to the final result. In pattern-matching
problems, for instance, string literals are primitive goals, alternative patterns are
disjunctions of subgoals and sequences of patterns are conjunctions of goals. The
unification process in Prolog is an example of a primitive goal, a Prolog relation
is a disjunction and Prolog rules are conjunctions of goals. Solving a goal then
typically involves implementing a backtracking mechanism that successively tries
each alternative solution until an adequate result is found.

Lua asymmetric coroutines used as generators simplifies the implementation
of this type of control behavior, avoiding the complex bookeeping code required
to manage explicit backtrack points. Wrapping a goal in a Lua coroutine allows
a backtracker, implemented as a simple loop construct, to successively retry
(resume) a goal it until an adequate result is found. A primitive goal can be
defined as a function that yields at each invocation one of its successful results.
A disjunction can be implemented by a function that sequentially invokes its
alternative goals. A conjunction of two subgoals can be defined as a function
that iterates on the first subgoal, invoking the second one for each produced
outcome. It is worth noticing that, again, the possibility of yielding from inside
nested calls is essential for this concise, straightforward implementation.

3.2 User-Level Multitasking

The aptness of coroutines as a concurrent construct was perceived by Wirth,
who introduced them in Modula-2 [Wirth, 1985] as a basic facility to support
the development of concurrent programs. Due mainly to the introduction of
the concept of threads, and its adoption in modern mainstream languages, this
suitable use of coroutines is, unfortunately, currently disregarded.

A language with coroutines does not require additional concurrency con-
structs to provide multitasking facilities: just like a thread, a coroutine rep-
resents a unit of execution that has its private data and control stack, while
sharing global data and other resources with other coroutines. However, while
the concept of a thread is typically associated with preemptive multitasking,
coroutines provide an alternative concurrency model which is essentially coop-
erative. A coroutine must explicitly request to be suspended to allow another
coroutine to run.

The development of correct multithreading applications is widely acknowl-
edged as a complex task. In some contexts, like operating systems and real-time
applications, where timely responses are essential, preemptive task scheduling

920 de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua

is unavoidable; in this case, programmers with considerable expertise are re-
sponsible for implementing adequate synchronization strategies. The timing re-
quirements of most concurrent applications, though, are not critical. Moreover,
application developers have, usually, little or no experience in concurrent pro-
gramming. In this scenario, ease of development is a relevant issue, and a cooper-
ative multitasking environment, which eliminates conflicts due to race conditions
and minimizes the need for synchronization, seems much more appropriate.

Implementing a multitasking application with Lua coroutines is straightfor-
ward. Concurrent tasks can be modeled by Lua coroutines. When a new task
is created, it is inserted in a list of live tasks. A simple task dispatcher can be
implemented by a loop that continuously iterates on this list, resuming the live
tasks and removing the ones that have finished their work (this condition can
be signalled by a predefined value returned by the coroutine main function to
the dispatcher). Occasional fairness problems, which are easy to identify, can be
solved by adding suspension requests in time-consuming tasks.

The only drawback of cooperative multitasking arises when using blocking
operations; if, for instance, a coroutine calls an I/O operation and blocks, the
entire program blocks until the operation completes, and no other coroutine
has a chance to proceed. This situation is easily avoided by providing auxiliary
functions that initiate an I/O request and yield, instead of blocking, when the
operation cannot be immediately completed. A complete example of a concurrent
application implemented with Lua coroutines, including non-blocking facilities,
can be found in [Ierusalimschy, 2003].

4 Coroutines in Programming Languages

The best-known programming language that incorporates a coroutine facility
is Simula [Birtwistle et al., 1976, Dahl et al., 1972], which also introduced the
concept of semi-coroutines. In Simula, coroutines are organized in an hierarchy
that is dynamically set up. The relationship between coroutines at the same
hierarchical level is symmetric; they exchange control between themselves by
means of resume operations. When a Simula coroutine is activated by means
of a call operation, it becomes hierachically subordinated to its activator, to
which it can transfer control back by calling detach. Because Simula coroutines
can behave either as symmetric or semi-symmetric coroutines (and, sometimes,
as both), their semantics is extremely complicated, and even experienced Simula
programmers may have difficulties in understanding the control flow in a program
that makes use of both constructs.

BCPL, a systems programming language widely used in the 1970’s and the
oldest ancestor of C, is another example of a language that incorporates coroutine
facilities [Moody and Richards, 1980]. Like Simula, the BCPL coroutine mech-
anism provides both asymmetric (Callco/Cowait) and symmetric (Resumeco)

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua o921

control transfer operations. The designers of the BCPL coroutine mechanism re-
marked, though, that a scheme involving only asymmetric facilities would have
a wide range of applications.

Modula-2 [Wirth, 1985] incorporates symmetric coroutines as a basic con-
struct for implementing concurrent processes. However, the potential of corou-
tine constructs to implement other forms of control behaviors is not well explored
in this language.

The iterator abstraction was originally proposed and implemented by the
designers of CLU [Liskov et al., 1977]. Because a CLU iterator preserves state
between succesive calls, they described it as a coroutine. However, CLU iterators
are not first-class objects, and are limited to a for loop construct that can
invoke exactly one iterator. Parallel traversals of two or more collections are not
possible. Sather iterators [Murer et al., 1996], inspired by CLU iterators, are also
confined to a single call point within a loop construct. The number of iterators
invoked per loop is not restricted as in CLU, but if any iterator terminates, the
loop is terminated. Although traversing multiple collections in a single loop is
possible with Sather iterators, aynchronous traversals, as required for merging
two binary trees, have no simple solution.

In Python [Schemenauer et al., 2001] a function that contains an yield state-
ment is called a generator function. When called, a generator function returns
a first-class object that can be resumed at any point in a program. However, a
Python generator can be suspended only when its control stack is at the same
level that it was at creation time; in other words, only the main body of a gen-
erator can yield. A similar facility has been proposed for Perl 6 [Conway, 2000]:
the addition of a new return command, also called yield, which preserves the
execution state of the subroutine in which it’s called.

Python generators and similar constructs complicate the structure of recur-
sive or more sophisticated generators. If items are produced within nested calls
or auxiliary functions, it is necessary to create an hierarchy of auxiliary genera-
tors that “yield” in succession until the generator’s original call point is reached.
Moreover, this type of construct is far less expressive than true coroutines; for
instance, it does not support the implementation of user-level multithreading.

Stackless Python [Laird, 2000] is an alternative implementation of Python
that was initially motivated by the provision of continuations as a basic con-
trol construct [Tismer, 2000]. The focus of this implementation, though, has
been recently redirected to the direct support of generators, coroutines and mi-
crothreads. The direct implementation of all these constructs clearly indicates
that the language designer does not recognize the power of coroutines as a single
unifying concept.

Icon’s goal-directed evaluation of expressions [Griswold and Griswold, 1996]
is a powerful language paradigm where backtracking is supported by another

922 de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua

restricted form of coroutines, named generators — expressions that may pro-
duce multiple values. Besides providing a collection of built-in generators, Icon
also supports user-defined generators — user-defined procedures that suspend
instead of returning. Although not limited to an specific construct, Icon genera-
tors are confined to the expression in which they are contained, and are invoked
only by explicit iteration and goal-directed evaluation. Icon generators per se,
then, are not powerful enough to provide for programmer-defined control struc-
tures. To support this facility, Icon provides co-expressions, first-class objects
that wrap an expression and an environment for its evaluation, so that the ex-
pression can be explicitly resumed at any place. Co-expressions are, actually, an
implementation of asymmetric coroutines.

5 Conclusions

In this article we have described the concept of asymmetric coroutines as imple-
mented by the language Lua. We have also demonstrated the generality of this
abstraction by showing that a language that provides true asymmetrical corou-
tines has no need to implement additional constructs to support several useful
control behaviors.

It is not difficult to show that the expressive power of asymmetric coroutines
is equivalent to that of one-shot subcontinuations [Hieb et al., 1994] and other
forms of partial continuations [Queinnec, 1993] that, differently from traditional
continuations, are non-abortive and can be composed like regular functions.
[Danvy and Filinski, 1990], [Queinnec and Serpette, 1991] and [Sitaram, 1993]
demonstrated that partial continuations provide more concise and understand-
able implementations of the classical applications of traditional continuations,
such as generators, backtracking and multitasking. We have shown in this paper
that these same applications can be equally easily expressed with asymmet-
rical coroutines. This is not a coincidence; actually, partial continuations and
asymmetrical coroutines have several similarities, which we are exploring in a
development of our work.

Despite its expressive power, the concept of a continuation is difficult to
manage and understand, specially in the context of procedural programming.
Asymmetrical coroutines have equivalent power, are arguably easier to imple-
ment and fits nicely in procedural languages.

Acknowledgements

This work was partially supported by grants from CNPqg-Brazil. The authors
would also like to thank the anonymous referees for their helpful comments.

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua 923

References

[Adya et al., 2002] Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and Doucer,
J. R. (2002). Cooperative Task Management without Manual Stack Management.
In Proceedings of USENIX 2002 Annual Technical Conference, Monterey, California.

[Behren et al., 2003] Behren, R., Condit, J., and Brewer, E. (2003). Why Events are
a Bad Idea (for high-concurrency servers). In Proceedings of the 10th Workshop on
Hot Topics in Operating Systems (HotOS IX), Lihue, Hawaii.

[Birtwistle et al., 1976] Birtwistle, G., Dahl, O.-J., Myhrhaug, B., and Nygaard, K.
(1976). Simula Begin. Studentlitteratur.

[Clocksin and Mellish, 1981] Clocksin, W. and Mellish, C. (1981). Programming in
Prolog. Springer-Verlag.

[Conway, 2000] Conway, D. (2000). RFC 31: Subroutines: Co-routines.
http://dev.perl.org/perl6/rfc/31.html.

[Conway, 1963] Conway, M. (1963). Design of a separable transition-diagram compiler.
Communications of the ACM, 6(7).

[Dahl et al., 1972] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. (1972). Hierar-
chical program structures. In Structured Programming. Academic Press, Second
edition.

[Danvy and Filinski, 1990] Danvy, O. and Filinski, A. (1990). Abstracting control. In
LFP’90 ACM Symposium on Lisp and Functional Programming.

[Figueiredo et al., 1996] Figueiredo, L. H., Ierusalimshcy, R., and Celes, W. (1996).
Lua: an extensible embedded language. Dr Dobb’s Journal, 21(12).

[Griswold and Griswold, 1996] Griswold, R. and Griswold, M. (1996). The Icon Pro-
gramming Language. Peer-to-Peer Communications, ISBN 1-57398-001-3, Third
edition.

[Hieb et al., 1994] Hieb, R., Dybvig, R., and Anderson III, C. W. (1994). Subcontin-
uations. Lisp and Symbolic Computation, 7(1):83-110.

[Ierusalimschy, 2003] Ierusalimschy, R. (2003). Programming in Lua. Lua.org, ISBN
85-903798-1-7.

[lerusalimschy et al., 1996] Ierusalimschy, R., Figueiredo, L. H., and Celes, W. (1996).
Lua-an extensible extension language. Software: Practice € Experience, 26(6).

[Laird, 2000] Laird, C. (2000). Introduction to Stackless Python.
http://www.onlamp.com/pub/a/python/2000/10/4/stackless-intro.html.

[Liskov et al., 1977] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C. (1977).
Abstraction mechanisms in CLU. Communications of the ACM, 20(8).

[Marlin, 1980] Marlin, C. D. (1980). Coroutines: A Programming Methodology, a Lan-
guage Design and an Implementation. LNCS 95, Springer-Verlag.

[Moody and Richards, 1980] Moody, K. and Richards, M. (1980). A coroutine mech-
anism for BCPL. Software: Practice & Experience, 10(10).

[Murer et al., 1996] Murer, S., Omohundro, S., Stoutamire, D., and Szyperski, C.
(1996). Iteration abstraction in Sather. ACM Transactions on Progamming Lan-
guages and Systems, 18(1).

[Pauli and Soffa, 1980] Pauli, W. and Soffa, M. L. (1980). Coroutine behaviour and
implementation. Software: Practice € Experience, 10.

[Queinnec, 1993] Queinnec, C. (1993). A library of high level control operators. ACM
SIGPLAN Lisp Pointers, VI(4).

[Queinnec and Serpette, 1991] Queinnec, C. and Serpette, B. (1991). A dynamic ex-
tent control operator for partial continuations. In POPL’91 Fighteenth Annual
ACM Symposium on Principles of Programming Languages.

[Richter, 1997] Richter, J. (1997). Advanced Windows. Microsoft Press, Third edition.

[Schemenauer et al., 2001] Schemenauer, N., Peters, T., and Hetland, M. (2001). PEP
255 Simple Generators. http://www.python.org/peps/pep-0255.html.

[Sitaram, 1993] Sitaram, D. (1993). Handling control. In ACM SIGPLAN’93 Conf.
on Programming Language Design and Implementation.

924 de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua

[Tismer, 2000] Tismer, C. (2000). Continuations and Stackless Python. In Proceedings
of the 8th International Python Conference, Arlington, VA.

[Wirth, 1985] Wirth, N. (1985). Programming in Modula-2. Springer-Verlag, Third,
corrected edition.

A Implementing Symmetric Coroutines

The following code provides a Lua extension library that supports the creation
of symmetric coroutines and their control transfer discipline:

coro = {}
coro.main = function() end
coro.current = coro.main

—- creates a new coroutine
function coro.create(f)
return coroutine.wrap(function(val)
return nil, f(val)
end)

end

-- transfers control to a coroutine
function coro.transfer(k, val)
if coro.current "= coro.main then
return coroutine.yield(k, val)
else
-- dispatching loop
while k do
coro.current = k
if k == coro.main then
return val

end
k, val = k(val)
end
error("coroutine ended without transfering control...")
end
end

The basic idea in this implementation is to simulate symmetric transfers of
control between Lua coroutines with pairs of yield/resume operations and an
auxiliary “dispatching loop”. In order to allow coroutines to return control to
the main program, table coro (which packs the symmetric coroutine facility)
provides a field (main) to represent the main program.

de Moura A. L., Rodriguez N., lerusalimschy R.: Coroutinesin Lua 925

When a coroutine, or the main program, wishes to transfer control, it calls
coro.transfer, passing the coroutine to be (re)activated; an extra argument de-
fined for this operation allows coroutines to exchange data. If the main program
is currently active, the dispatching loop is executed; if not, function transfer
uses coroutine.yield to reactivate the dispatcher, which acts as an intermedi-
ary in the switch of control (and data) between the coroutines. When control is
to be transfered to the main program, function transfer returns.

