
Reference Manual of the Programming Language Lua 3.2

Roberto Ierusalimschy Luiz Henrique de Figueiredo Waldemar Celes

lua@tecgraf.puc-rio.br

TeCGraf | Computer Science Department | PUC-Rio

$Date: 1999/05/27 20:21:03

Abstract

Lua is a programming language originally designed for extending applications, but also fre-

quently used as a general-purpose, stand-alone language. Lua combines simple procedural syn-

tax (similar to Pascal) with powerful data description constructs based on associative arrays and

extensible semantics. Lua is dynamically typed, interpreted from bytecodes, and has automatic

memory management with garbage collection, making it ideal for con�guration, scripting, and

rapid prototyping.

This document describes version 3.2 of the Lua programming language and the API that

allows interaction between Lua programs and their host C programs.

Sum�ario

Lua �e uma linguagem de programa�c~ao originalmente projetada para extens~ao de aplica�c~oes, e

que �e tamb�em frequentemente usada como uma linguagem de prop�osito geral. Lua combina

uma sintaxe procedural simples (similar a Pascal) com poderosas facilidades para descri�c~ao de

dados baseadas em tabelas associativas e uma semântica estens��vel. Lua tem tipagem dinâmica,

�e interpretada via bytecodes, e tem gerenciamento autom�atico de mem�oria com coleta de lixo,

tornando-se ideal para con�gura�c~ao, scripting, e prototipagem r�apida.

Este documento descreve a vers~ao 3.2 da linguagem de programa�c~ao Lua e a Interface de

Programa�c~ao (API) que permite a intera�c~ao entre programas Lua e programas C hospedeiros.

Copyright c
 1994{1999 TeCGraf, PUC-Rio. All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to use,

copy, modify, and distribute this software and its documentation for any purpose, including commercial

applications, subject to the following conditions:

� The above copyright notice and this permission notice shall appear in all copies or substantial

portions of this software.

� The origin of this software must not be misrepresented; you must not claim that you wrote

the original software. If you use this software in a product, an acknowledgment in the product

documentation would be greatly appreciated (but it is not required).

� Altered source versions must be plainly marked as such, and must not be misrepresented as being

the original software.

The authors speci�cally disclaim any warranties, including, but not limited to, the implied warranties

of merchantability and �tness for a particular purpose. The software provided hereunder is on an \as

is" basis, and the authors have no obligation to provide maintenance, support, updates, enhancements,

or modi�cations. In no event shall TeCGraf, PUC-Rio, or the authors be held liable to any party for

direct, indirect, special, incidental, or consequential damages arising out of the use of this software and

its documentation.

The Lua language and this implementation have been entirely designed and written by Waldemar Celes,

Roberto Ierusalimschy and Luiz Henrique de Figueiredo at TeCGraf, PUC-Rio.

This implementation contains no third-party code.

Contents

1 Introduction 1

2 Environment and Chunks 1

3 Types and Tags 1

4 The Language 2

4.1 Lexical Conventions . 2

4.2 The Pre-processor . 3

4.3 Coercion . 4

4.4 Adjustment . 4

4.5 Statements . 4

4.5.1 Blocks . 4

4.5.2 Assignment . 5

4.5.3 Control Structures . 5

4.5.4 Function Calls as Statements . 5

4.5.5 Local Declarations . 6

4.6 Expressions . 6

4.6.1 Basic Expressions . 6

4.6.2 Arithmetic Operators . 6

4.6.3 Relational Operators . 7

4.6.4 Logical Operators . 7

4.6.5 Concatenation . 7

4.6.6 Precedence . 7

4.6.7 Table Constructors . 8

4.6.8 Function Calls . 9

4.6.9 Function De�nitions . 10

4.7 Visibility and Upvalues . 11

4.8 Tag Methods . 12

4.9 Error Handling . 16

5 The Application Program Interface 17

5.1 Managing States . 17

5.2 Exchanging Values between C and Lua . 18

5.3 Garbage Collection . 19

5.4 Executing Lua Code . 20

5.5 Manipulating Lua Objects . 21

5.6 Calling Lua Functions . 22

5.7 C Functions . 23

5.8 References to Lua Objects . 23

6 Prede�ned Functions and Libraries 24

6.1 Prede�ned Functions . 24

6.2 String Manipulation . 30

6.3 Mathematical Functions . 34

6.4 I/O Facilities . 34

7 The Debugger Interface 38

7.1 Stack and Function Information . 38

7.2 Manipulating Local Variables . 39

7.3 Hooks . 39

7.4 The Re
exive Debugger Interface . 40

8 Lua Stand-alone 41

1 Introduction

Lua is an extension programming language designed to support general procedural programming

with data description facilities. Lua is intended to be used as a light-weight, but powerful, con�g-

uration language for any program that needs one.

Lua is implemented as a library, written in C. Being an extension language, Lua has no notion

of a \main" program: it only works embedded in a host client, called the embedding program.

This host program can invoke functions to execute a piece of code in Lua, can write and read Lua

variables, and can register C functions to be called by Lua code. Through the use of C functions,

Lua can be augmented to cope with a wide range of di�erent domains, thus creating customized

programming languages sharing a syntactical framework.

Lua is free-distribution software, and provided as usual with no guarantees, as stated in the

copyright notice. The implementation described in this manual is available at the following URL's:

http://www.tecgraf.puc-rio.br/lua/

ftp://ftp.tecgraf.puc-rio.br/pub/lua/lua.tar.gz

2 Environment and Chunks

All statements in Lua are executed in a global environment . This environment, which keeps all

global variables, is initialized with a call from the embedding program to lua_open and persists

until a call to lua_close, or the end of the embedding program. Optionally, a user can create

multiple independent global environments (see Section 5.1).

The global environment can be manipulated by Lua code or by the embedding program, which

can read and write global variables using API functions from the library that implements Lua.

Global variables do not need declaration. Any variable is assumed to be global unless explicitly

declared local (see Section 4.5.5). Before the �rst assignment, the value of a global variable is nil;

this default can be changed (see Section 4.8).

The unit of execution of Lua is called a chunk . A chunk is simply a sequence of statements:

chunk ! fstatg [ret]

Statements are described in Section 4.5. (As usual, fag means 0 or more a's, [a] means an optional

a and fag+ means one or more a's.)

A chunk may be in a �le or in a string inside the host program. A chunk may optionally end

with a return statement (see Section 4.5.3). When a chunk is executed, �rst all its code is pre-

compiled, then the statements are executed in sequential order. All modi�cations a chunk e�ects

on the global environment persist after the chunk end.

Chunks may also be pre-compiled into binary form; see program luac for details. Text �les

with chunks and their binary pre-compiled forms are interchangeable. Lua automatically detects

the �le type and acts accordingly.

3 Types and Tags

Lua is a dynamically typed language. Variables do not have types; only values do. Therefore, there

are no type de�nitions in the language. All values carry their own type. Besides a type, all values

also have a tag.

There are six basic types in Lua: nil , number , string , function, userdata, and table. Nil is

the type of the value nil, whose main property is to be di�erent from any other value. Number

1

represents real (double-precision
oating-point) numbers, while string has the usual meaning. Lua

is eight-bit clean, and so strings may contain any 8-bit character, including embedded zeros ('\0').

The function type returns a string describing the type of a given value (see Section 6.1).

Functions are considered �rst-class values in Lua. This means that functions can be stored

in variables, passed as arguments to other functions, and returned as results. Lua can call (and

manipulate) functions written in Lua and functions written in C. They can be distinguished by

their tags: all Lua functions have the same tag, and all C functions have the same tag, which is

di�erent from the tag of Lua functions.

The type userdata is provided to allow arbitrary C pointers to be stored in Lua variables. It

corresponds to a void* and has no pre-de�ned operations in Lua, besides assignment and equality

test. However, by using tag methods, the programmer can de�ne operations for userdata values

(see Section 4.8).

The type table implements associative arrays, that is, arrays that can be indexed not only with

numbers, but with any value (except nil). Therefore, this type may be used not only to represent

ordinary arrays, but also symbol tables, sets, records, etc. Tables are the main data structuring

mechanism in Lua. To represent records, Lua uses the �eld name as an index. The language

supports this representation by providing a.name as syntactic sugar for a["name"]. Tables may

also carry methods. Because functions are �rst class values, table �elds may contain functions. The

form t:f(x) is syntactic sugar for t.f(t,x), which calls the method f from the table t passing

itself as the �rst parameter (see Section 4.6.9).

Note that tables are objects, and not values. Variables cannot contain tables, only references

to them. Assignment, parameter passing, and returns always manipulate references to tables,

and do not imply any kind of copy. Moreover, tables must be explicitly created before used (see

Section 4.6.7).

Tags are mainly used to select tag methods when some events occur. Tag methods are the main

mechanism for extending the semantics of Lua (see Section 4.8). Each of the types nil, number and

string has a di�erent tag. All values of each of these types have this same pre-de�ned tag. Values

of type function can have two di�erent tags, depending on whether they are Lua functions or C

functions. Finally, values of type userdata and table can have as many di�erent tags as needed (see

Section 4.8). Tags are created with the function newtag, and the function tag returns the tag of a

given value. To change the tag of a given table, there is the function settag (see Section 6.1).

4 The Language

This section describes the lexis, the syntax and the semantics of Lua.

4.1 Lexical Conventions

Identi�ers in Lua can be any string of letters, digits, and underscores, not beginning with a digit.

The de�nition of letter depends on the current locale: Any character considered alphabetic by the

current locale can be used in an identi�er. The following words are reserved, and cannot be used

as identi�ers:

and do else elseif

end function if local

nil not or repeat

return then until while

2

Lua is a case-sensitive language: and is a reserved word, but And and �and (if the locale permits)

are two other di�erent identi�ers. As a convention, identi�ers starting with underscore followed by

uppercase letters are reserved for internal variables.

The following strings denote other tokens:

~= <= >= < > == = + - * / %

() { } [] ; ,

Literal strings can be delimited by matching single or double quotes, and can contain the C-like

escape sequences '\a' (bell), '\b' (backspace), '\f' (form feed), '\n' (new line), '\r' (carriage

return), '\t' (horizontal tab), '\v' (vertical tab), '\\', (backslash), '\"', (double quote), and

'\'' (single quote). A character in a string may also be speci�ed by its numerical value, through

the escape sequence '\ddd', where ddd is a sequence of up to three decimal digits. Strings in Lua

may contain any 8-bit value, including embedded 0.

Literal strings can also be delimited by matching [[...]]. Literals in this bracketed form may

run for several lines, may contain nested [[...]] pairs, and do not interpret escape sequences.

This form is specially convenient for writing strings that contain program pieces or other quoted

strings. As an example, in a system using ASCII, the following three literals are equivalent:

1) "alo\n123\""

2) '\97lo\10\04923"'

3) [[alo

123"]]

Comments start anywhere outside a string with a double hyphen (--) and run until the end of

the line. Moreover, the �rst line of a chunk is skipped if it starts with #. This facility allows the

use of Lua as a script interpreter in Unix systems (see Section 8).

Numerical constants may be written with an optional decimal part, and an optional decimal

exponent. Examples of valid numerical constants are

3 3.0 3.1416 314.16e-2 0.31416E1

4.2 The Pre-processor

All lines that start with a $ sign are handled by a pre-processor. The $ sign must be immediately

followed by one of the following directives:

debug | turn on debugging facilities (see Section 4.9).

nodebug | turn o� debugging facilities (see Section 4.9).

if cond | starts a conditional part. If cond is false, then this part is skipped by the lexical

analyzer.

ifnot cond | starts a conditional part. If cond is true, then this part is skipped by the lexical

analyzer.

end | ends a conditional part.

else | starts an \else" conditional part,
ipping the \skip" status.

endinput | ends the lexical parse of the �le.

3

Directives may be freely nested. Particularly, a $endinput may occur inside a $if; in that case,

even the matching $end is not parsed.

A cond part may be

nil | always false.

1 | always true.

name | true if the value of the global variable name is di�erent from nil. Note that name is

evaluated before the chunk starts its execution. Therefore, actions in a chunk do not a�ect

its own conditional directives.

4.3 Coercion

Lua provides some automatic conversions between values at run time. Any arithmetic operation

applied to a string tries to convert that string to a number, following the usual rules. Conversely,

whenever a number is used when a string is expected, that number is converted to a string, in a

reasonable format. For complete control on how numbers are converted to strings, use the format

function (see Section 6.2).

4.4 Adjustment

Functions in Lua can return many values. Because there are no type declarations, when a function

is called the system does not know how many values a function will return, or how many parameters

it needs. Therefore, sometimes, a list of values must be adjusted, at run time, to a given length. If

there are more values than are needed, then the excess values are thrown away. If there are more

needs than values, then the list is extended with as many nil's as needed. Adjustment occurs in

multiple assignment (see Section 4.5.2) and function calls (see Section 4.6.8).

4.5 Statements

Lua supports an almost conventional set of statements, similar to those in Pascal or C. The con-

ventional commands include assignment, control structures and procedure calls. Non-conventional

commands include table constructors (see Section 4.6.7), and local variable declarations (see Sec-

tion 4.5.5).

4.5.1 Blocks

A block is a list of statements, which are executed sequentially. A statement may be optionally

followed by a semicolon:

block ! fstat scg [ret]

sc ! [';']

For syntactic reasons, a return statement can only be written as the last statement of a block.

This restriction also avoids some \statement not reached" conditions.

A block may be explicitly delimited:

stat ! do block end

This is useful to control the scope of local variables (see Section 4.5.5).

4

4.5.2 Assignment

The language allows multiple assignment. Therefore, the syntax for assignment de�nes a list of

variables on the left side, and a list of expressions on the right side. Both lists have their elements

separated by commas:

stat ! varlist1 '=' explist1

varlist1 ! var f',' varg

This statement �rst evaluates all values on the right side and eventual indices on the left side, and

then makes the assignments. Therefore, it can be used to exchange two values, as in

x, y = y, x

The two lists may have di�erent lengths. Before the assignment, the list of values is adjusted to

the length of the list of variables (see Section 4.4).

A single name can denote a global variable, a local variable, or a formal parameter:

var ! name

Square brackets are used to index a table:

var ! simpleexp '[' exp1 ']'

The simpleexp should result in a table value, from where the �eld indexed by the expression value

gets the assigned value.

The syntax var.NAME is just syntactic sugar for var["NAME"]:

var ! simpleexp '.' name

The meaning of assignments and evaluations of global variables and indexed variables can be

changed by tag methods (see Section 4.8). Actually, an assignment x = val, where x is a global

variable, is equivalent to a call setglobal('x', val); an assignment t[i] = val is equivalent

to settable_event(t, i, val). See Section 4.8 for a complete description of these functions.

(Function setglobal is pre-de�ned in Lua. Function settable event is used only for explanatory

purposes.)

4.5.3 Control Structures

The condition expression of a control structure may return any value. All values di�erent from

nil are considered true; only nil is considered false. if's, while's and repeat's have the usual

meaning.

stat ! while exp1 do block end

j repeat block until exp1

j if exp1 then block felseif exp1 then blockg [else block] end

A return is used to return values from a function or from a chunk. Because they may return

more than one value, the syntax for a return statement is

ret ! return [explist1] [sc]

4.5.4 Function Calls as Statements

Because of possible side-e�ects, function calls can be executed as statements:

5

stat ! functioncall

In this case, all returned values are thrown away. Function calls are explained in Section 4.6.8.

4.5.5 Local Declarations

Local variables may be declared anywhere inside a block. Their scope begins after the declaration

and lasts until the end of the block. The declaration may include an initial assignment:

stat ! local declist [init]

declist ! name f',' nameg

init ! '=' explist1

If present, an initial assignment has the same semantics of a multiple assignment. Otherwise, all

variables are initialized with nil.

4.6 Expressions

4.6.1 Basic Expressions

Basic expressions are

exp ! '(' exp ')'

exp ! nil

exp ! 'number'

exp ! 'literal'

exp ! function

exp ! simpleexp

simpleexp ! var

simpleexp ! upvalue

simpleexp ! functioncall

Numbers (numerical constants) and string literals are explained in Section 4.1; variables are

explained in Section 4.5.2; upvalues are explained in Section 4.7; function de�nitions (function) are

explained in Section 4.6.9; function calls are explained in Section 4.6.8.

An access to a global variable x is equivalent to a call getglobal('x'); an access to an indexed

variable t[i] is equivalent to a call gettable_event(t, i). See Section 4.8 for a description of

these functions. (Function getglobal is pre-de�ned in Lua. Function gettable event is used only

for explanatory purposes.)

The non-terminal exp1 is used to indicate that the values returned by an expression must be

adjusted to one single value:

exp1 ! exp

4.6.2 Arithmetic Operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), * (multipli-

cation), / (division) and ^ (exponentiation), and unary - (negation). If the operands are numbers,

or strings that can be converted to numbers (according to the rules given in Section 4.3), then all

operations except exponentiation have the usual meaning. Otherwise, an appropriate tag method

6

is called (see Section 4.8). An exponentiation always calls a tag method. The standard mathemat-

ical library rede�nes this method for numbers, giving the expected meaning to exponentiation (see

Section 6.3).

4.6.3 Relational Operators

Lua provides the following relational operators:

< > <= >= ~= ==

All these return nil as false and a value di�erent from nil as true.

Equality �rst compares the tags of its operands. If they are di�erent, then the result is nil.

Otherwise, their values are compared. Numbers and strings are compared in the usual way. Tables,

userdata and functions are compared by reference, that is, two tables are considered equal only if

they are the same table. The operator ~= is exactly the negation of equality (==). Note that the

conversion rules of Section 4.3 do not apply to equality comparisons. Thus, "0"==0 evaluates to

false, and t[0] and t["0"] denote di�erent entries in a table.

The other operators work as follows. If both arguments are numbers, then they are compared as

such. Otherwise, if both arguments are strings, then their values are compared using lexicographical

order. Otherwise, the \order" tag method is called (see Section 4.8).

4.6.4 Logical Operators

The logical operators are

and or not

Like control structures, all logical operators consider nil as false and anything else as true. The

operator and returns nil if its �rst argument is nil; otherwise, it returns its second argument. The

operator or returns its �rst argument if it is di�erent from nil; otherwise, it returns its second

argument. Both and and or use short-cut evaluation, that is, the second operand is evaluated only

when necessary.

A useful Lua idiom is x = x or v, which is equivalent to

if x == nil then x = v end

i.e., it sets x to a default value v when x is not set.

4.6.5 Concatenation

The string concatenation operator in Lua is denoted by \..". If both operands are strings or

numbers, they are converted to strings according to the rules in Section 4.3. Otherwise, the \concat"

tag method is called (see Section 4.8).

4.6.6 Precedence

Operator precedence follows the table below, from the lower to the higher priority:

and or

< > <= >= ~= ==

..

7

+ -

* /

not - (unary)

^

All binary operators are left associative, except for ^ (exponentiation), which is right associative.

4.6.7 Table Constructors

Table constructors are expressions that create tables; every time a constructor is evaluated, a new

table is created. Constructors can be used to create empty tables, or to create a table and initialize

some �elds.

The general syntax for constructors is

tableconstructor ! 'f' �eldlist 'g'

�eldlist ! l�eldlist j �eldlist j l�eldlist ';' �eldlist j �eldlist ';' l�eldlist

l�eldlist ! [l�eldlist1]

�eldlist ! [�eldlist1]

The form l�eldlist1 is used to initialize lists:

l�eldlist1 ! exp f',' expg [',']

The expressions in the list are assigned to consecutive numerical indices, starting with 1. For

example,

a = {"v1", "v2", 34}

is equivalent to

do

local temp = {}

temp[1] = "v1"

temp[2] = "v2"

temp[3] = 34

a = temp

end

The form �eldlist1 initializes other �elds in a table:

�eldlist1 ! �eld f',' �eldg [',']

�eld ! '[' exp ']' '=' exp j name '=' exp

For example,

a = {[f(k)] = g(y), x = 1, y = 3, [0] = b+c}

is equivalent to

do

local temp = {}

temp[f(k)] = g(y)

temp.x = 1 -- or temp["x"] = 1

temp.y = 3 -- or temp["y"] = 3

temp[0] = b+c

a = temp

end

8

An expression like {x = 1, y = 4} is in fact syntactic sugar for {["x"] = 1, ["y"] = 4}.

Both forms may have an optional trailing comma, and can be used in the same constructor

separated by a semi-collon. For example, all forms below are correct:

x = {;}

x = {'a', 'b',}

x = {type='list'; 'a', 'b'}

x = {f(0), f(1), f(2),; n=3,}

4.6.8 Function Calls

A function call has the following syntax:

functioncall ! simpleexp args

First, simpleexp is evaluated. If its value has type function, then this function is called, with the

given arguments. Otherwise, the \function" tag method is called, having as �rst parameter the

value of simpleexp, and then the original call parameters.

The form:

functioncall ! simpleexp ':' name args

can be used to call \methods". A call simpleexp:name(...) is syntactic sugar for

simpleexp.name(simpleexp, ...)

except that simpleexp is evaluated only once.

Arguments have the following syntax:

args ! '(' [explist1] ')'

args ! tableconstructor

args ! 'literal'

explist1 ! exp1 f',' exp1g

All argument expressions are evaluated before the call. A call of the form f{...} is syntactic sugar

for f({...}), that is, the parameter list is a single new table. A call of the form f'...' (or f"..."

or f[[...]]) is syntactic sugar for f('...'), that is, the parameter list is a single literal string.

Because a function can return any number of results (see Section 4.5.3), the number of results

must be adjusted before used. If the function is called as a statement (see Section 4.5.4), then

its return list is adjusted to 0, thus discarding all returned values. If the function is called in a

place that needs a single value (syntactically denoted by the non-terminal exp1), then its return

list is adjusted to 1, thus discarding all returned values but the �rst one. If the function is called

in a place that can hold many values (syntactically denoted by the non-terminal exp), then no

adjustment is made. Note that the only place that can hold many values is the last (or the only)

expression in an assignment or in a return statement; see examples below.

f(); -- adjusted to 0

g(x, f()); -- f() is adjusted to 1

a,b,c = f(), x; -- f() is adjusted to 1 result (and c gets nil)

a,b,c = x, f(); -- f() is adjusted to 2

a,b,c = f(); -- f() is adjusted to 3

return f(); -- returns all values returned by f()

9

4.6.9 Function De�nitions

The syntax for function de�nition is

function ! function '(' [parlist1] ')' block end

stat ! function funcname '(' [parlist1] ')' block end

funcname ! name j name '.' name

The statement

function f (...)

...

end

is just syntactic sugar for

f = function (...)

...

end

A function de�nition is an executable expression, whose value has type function. When Lua

pre-compiles a chunk, all its function bodies are pre-compiled, too. Then, whenever Lua executes

the function de�nition, its upvalues are �xed (see Section 4.7), and the function is instantiated

(or \closed"). This function instance (or \closure") is the �nal value of the expression. Di�erent

instances of a same function may have di�erent upvalues.

Parameters act as local variables, initialized with the argument values:

parlist1 ! '. . . '

parlist1 ! name f',' nameg [',' '. . . ']

When a function is called, the list of arguments is adjusted to the length of the list of parameters

(see Section 4.4), unless the function is a vararg function, indicated by the dots (. . .) at the end of

its parameter list. A vararg function does not adjust its argument list; instead, it collects any extra

arguments into an implicit parameter, called arg. This parameter is always initialized as a table,

with a �eld n whose value is the number of extra arguments, and the extra arguments at positions

1, 2, . . .

As an example, suppose de�nitions like:

function f(a, b) end

function g(a, b, ...) end

Then, we have the following mapping from arguments to parameters:

CALL PARAMETERS

f(3) a=3, b=nil

f(3, 4) a=3, b=4

f(3, 4, 5) a=3, b=4

g(3) a=3, b=nil, arg={n=0}

g(3, 4) a=3, b=4, arg={n=0}

g(3, 4, 5, 8) a=3, b=4, arg={5, 8; n=2}

10

Results are returned using the return statement (see Section 4.5.3). If control reaches the end

of a function without a return instruction, then the function returns with no results.

There is a special syntax for de�ning methods, that is, functions that have an implicit extra

parameter self:

function ! function name ':' name '(' [parlist1] ')' block end

Thus, a declaration like

function v:f (...)

...

end

is equivalent to

v.f = function (self, ...)

...

end

that is, the function gets an extra formal parameter called self. Note that the variable v must

have been previously initialized with a table value.

4.7 Visibility and Upvalues

A function body may refer to its own local variables (which includes its parameters) and to global

variables, as long as they are not shadowed by local variables from enclosing functions. A function

cannot access a local variable from an enclosing function, since such variables may no longer exist

when the function is called. However, a function may access the value of a local variable from an

enclosing function, using upvalues.

upvalue ! '%' name

An upvalue is somewhat similar to a variable expression, but whose value is frozen when the

function wherein it appears is instantiated. The name used in an upvalue may be the name of any

variable visible at the point where the function is de�ned.

Here are some examples:

a,b,c = 1,2,3 -- global variables

function f (x)

local b -- x and b are local to f

local g = function (a)

local y -- a and y are local to g

p = a -- OK, access local 'a'

p = c -- OK, access global 'c'

p = b -- ERROR: cannot access a variable in outer scope

p = %b -- OK, access frozen value of 'b' (local to 'f')

p = %c -- OK, access frozen value of global 'c'

p = %y -- ERROR: 'y' is not visible where 'g' is defined

end -- g

end -- f

11

4.8 Tag Methods

Lua provides a powerful mechanism to extend its semantics, called tag methods. A tag method

is a programmer-de�ned function that is called at speci�c key points during the evaluation of a

program, allowing the programmer to change the standard Lua behavior at these points. Each of

these points is called an event .

The tag method called for any speci�c event is selected according to the tag of the values involved

in the event (see Section 3). The function settagmethod changes the tag method associated with

a given pair (tag, event). Its �rst parameter is the tag, the second parameter is the event name

(a string; see below), and the third parameter is the new method (a function), or nil to restore

the default behavior for the pair. The function returns the previous tag method for that pair.

Another function, gettagmethod, receives a tag and an event name and returns the current method

associated with the pair.

Tag methods are called in the following events, identi�ed by the given names. The semantics

of tag methods is better explained by a Lua function describing the behavior of the interpreter at

each event. The function not only shows when a tag method is called, but also its arguments, its

results and the default behavior. Please notice that the code shown here is only illustrative; the

real behavior is hard coded in the interpreter, and it is much more e�cient than this simulation.

All functions used in these descriptions (rawgetglobal, tonumber, call, etc.) are described in

Section 6.1.

\add": called when a + operation is applied to non numerical operands.

The function getbinmethod de�nes how Lua chooses a tag method for a binary operation.

First, Lua tries the �rst operand. If its tag does not de�ne a tag method for the operation,

then Lua tries the second operand. If it also fails, then it gets a tag method from tag 0:

function getbinmethod (op1, op2, event)

return gettagmethod(tag(op1), event) or

gettagmethod(tag(op2), event) or

gettagmethod(0, event)

end

function add_event (op1, op2)

local o1, o2 = tonumber(op1), tonumber(op2)

if o1 and o2 then -- both operands are numeric

return o1+o2 -- '+' here is the primitive 'add'

else -- at least one of the operands is not numeric

local tm = getbinmethod(op1, op2, "add")

if tm then

-- call the method with both operands and an extra

-- argument with the event name

return tm(op1, op2, "add")

else -- no tag method available: default behavior

error("unexpected type at arithmetic operation")

end

end

end

12

\sub": called when a - operation is applied to non numerical operands. Behavior similar to the

"add" event.

\mul": called when a * operation is applied to non numerical operands. Behavior similar to the

"add" event.

\div": called when a / operation is applied to non numerical operands. Behavior similar to the

"add" event.

\pow": called when a ^ operation is applied.

function pow_event (op1, op2)

local tm = getbinmethod(op1, op2, "pow")

if tm then

-- call the method with both operands and an extra

-- argument with the event name

return tm(op1, op2, "pow")

else -- no tag method available: default behavior

error("unexpected type at arithmetic operation")

end

end

\unm": called when an unary - operation is applied to a non numerical operand.

function unm_event (op)

local o = tonumber(op)

if o then -- operand is numeric

return -o -- '-' here is the primitive 'unm'

else -- the operand is not numeric.

-- Try to get a tag method from the operand;

-- if it does not have one, try a "global" one (tag 0)

local tm = gettagmethod(tag(op), "unm") or

gettagmethod(0, "unm")

if tm then

-- call the method with the operand, nil, and an extra

-- argument with the event name

return tm(op, nil, "unm")

else -- no tag method available: default behavior

error("unexpected type at arithmetic operation")

end

end

end

\lt": called when a < operation is applied to non numerical or non string operands.

function lt_event (op1, op2)

if type(op1) == "number" and type(op2) == "number" then

return op1 < op2 -- numeric comparison

elseif type(op1) == "string" and type(op2) == "string" then

13

return op1 < op2 -- lexicographic comparison

else

local tm = getbinmethod(op1, op2, "lt")

if tm then

return tm(op1, op2, "lt")

else

error("unexpected type at comparison");

end

end

end

\gt": called when a > operation is applied to non numerical or non string operands. Behavior

similar to the "lt" event.

\le": called when a <= operation is applied to non numerical or non string operands. Behavior

similar to the "lt" event.

\ge": called when a >= operation is applied to non numerical or non string operands. Behavior

similar to the "lt" event.

\concat": called when a concatenation is applied to non string operands.

function concat_event (op1, op2)

if (type(op1) == "string" or type(op1) == "number") and

(type(op2) == "string" or type(op2) == "number") then

return op1..op2 -- primitive string concatenation

else

local tm = getbinmethod(op1, op2, "concat")

if tm then

return tm(op1, op2, "concat")

else

error("unexpected type for concatenation")

end

end

end

\index": called when Lua tries to retrieve the value of an index not present in a table. See event

"gettable" for its semantics.

\getglobal": called whenever Lua needs the value of a global variable. This method can only be

set for nil and for tags created by newtag.

function getglobal (varname)

local value = rawgetglobal(varname)

local tm = gettagmethod(tag(value), "getglobal")

if not tm then

return value

else

return tm(varname, value)

14

end

end

The function getglobal is pre-de�ned in Lua (see Section 6.1).

\setglobal": called whenever Lua assigns to a global variable. This method cannot be set for

numbers, strings, and tables and userdata with default tags.

function setglobal (varname, newvalue)

local oldvalue = rawgetglobal(varname)

local tm = gettagmethod(tag(oldvalue), "setglobal")

if not tm then

return rawsetglobal(varname, newvalue)

else

return tm(varname, oldvalue, newvalue)

end

end

Notice: the function setglobal is pre-de�ned in Lua (see Section 6.1).

\gettable": called whenever Lua accesses an indexed variable. This method cannot be set for

tables with default tag.

function gettable_event (table, index)

local tm = gettagmethod(tag(table), "gettable")

if tm then

return tm(table, index)

elseif type(table) ~= "table" then

error("indexed expression not a table");

else

local v = rawgettable(table, index)

tm = gettagmethod(tag(table), "index")

if v == nil and tm then

return tm(table, index)

else

return v

end

end

end

\settable": called when Lua assigns to an indexed variable. This method cannot be set for tables

with default tag.

function settable_event (table, index, value)

local tm = gettagmethod(tag(table), "settable")

if tm then

tm(table, index, value)

elseif type(table) ~= "table" then

15

error("indexed expression not a table")

else

rawsettable(table, index, value)

end

end

\function": called when Lua tries to call a non function value.

function function_event (func, ...)

if type(func) == "function" then

return call(func, arg)

else

local tm = gettagmethod(tag(func), "function")

if tm then

local i = arg.n

while i > 0 do

arg[i+1] = arg[i]

i = i-1

end

arg.n = arg.n+1

arg[1] = func

return call(tm, arg)

else

error("call expression not a function")

end

end

end

\gc": called when Lua is \garbage collecting" an object. This method cannot be set for strings,

numbers, functions, and userdata with default tag. For each object to be collected, Lua does

the equivalent of the following function:

function gc_event (obj)

local tm = gettagmethod(tag(obj), "gc")

if tm then

tm(obj)

end

end

Moreover, at the end of a garbage collection cycle, Lua does the equivalent of the call

gc_event(nil).

4.9 Error Handling

Because Lua is an extension language, all Lua actions start from C code in the host program calling

a function from the Lua library. Whenever an error occurs during Lua compilation or execution,

function _ERRORMESSAGE is called (provided it is di�erent from nil), and then the corresponding

16

function from the library (lua_dofile, lua_dostring, lua_dobuffer, or lua_callfunction) is

terminated, returning an error condition.

The only argument to _ERRORMESSAGE is a string describing the error. The default de�nition

for this function calls _ALERT, which prints the message to stderr (see Section 6.1). The standard

I/O library rede�nes _ERRORMESSAGE, and uses the debug facilities (see Section 7) to print some

extra information, such as the call stack.

To provide more information about errors, Lua programs should include the compilation pragma

$debug. When an error occurs in a chunk compiled with this option, the I/O error routine is able

to print the number of the lines where the calls (and the error) were made.

Lua code can explicitly generate an error by calling the built-in function error (see Section 6.1).

Lua code can \catch" an error using the built-in function call (see Section 6.1).

5 The Application Program Interface

This section describes the API for Lua, that is, the set of C functions available to the host program

to communicate with the Lua library. The API functions can be classi�ed in the following categories:

1. managing states;

2. exchanging values between C and Lua;

3. executing Lua code;

4. manipulating (reading and writing) Lua objects;

5. calling Lua functions;

6. C functions to be called by Lua;

7. manipulating references to Lua Objects.

All API functions and related types and constants are declared in the header �le lua.h.

5.1 Managing States

The whole state of the Lua interpreter (global variables, stack, tag methods, etc) is stored in a

dynamic structure pointed by

typedef struct lua_State lua_State;

extern lua_State *lua_state;

The variable lua_state is the only C global variable in the Lua library.

Before calling any API function, this state must be initialized. This is done by calling

void lua_open (void);

This function allocates and initializes some internal structures, and de�nes all pre-de�ned functions

of Lua. If lua_state is already di�erent from NULL, lua_open has no e�ect; therefore, it is safe to

call this function multiple times. All standard libraries call lua_open when they are opened.

Function lua_setstate is used to change the current state of Lua:

lua_State *lua_setstate (lua_State *st);

17

It sets lua_state to st and returns the old state.

Multiple, independent states may be created. For that, you must set lua_state back to NULL

before calling lua_open. An easy way to do that is de�ning an auxiliary function:

lua_State *lua_newstate (void) {

lua_State *old = lua_setstate(NULL);

lua_open();

return lua_setstate(old);

}

This function creates a new state without changing the current state of the interpreter. Note that

any new state is created with all prede�ned functions, but any additional library (such as the

standard libraries) must be explicitly open in the new state, if needed.

If necessary, a state may be released by calling

void lua_close (void);

This function destroys all objects in the current Lua environment (calling the correspondent garbage

collector tag methods), frees all dynamic memory used by the state, and then sets lua_state to

NULL. Usually, there is no need to call this function, since these resources are naturally released

when the program ends. If lua_state is already NULL, lua_close has no e�ect.

If you are using multiple states, you may �nd useful to de�ne the following function, which

releases a given state:

void lua_freestate (lua_State *st) {

lua_State *old = lua_setstate(st);

lua_close();

if (old != st) lua_setstate(old);

}

5.2 Exchanging Values between C and Lua

Because Lua has no static type system, all values passed between Lua and C have type lua_Object,

which works like an abstract type in C that can hold any Lua value. Values of type lua_Object

have no meaning outside Lua; for instance, the comparison of two lua_Object's is unde�ned.

To check the type of a lua_Object, the following functions are available:

int lua_isnil (lua_Object object);

int lua_isnumber (lua_Object object);

int lua_isstring (lua_Object object);

int lua_istable (lua_Object object);

int lua_isfunction (lua_Object object);

int lua_iscfunction (lua_Object object);

int lua_isuserdata (lua_Object object);

These functions return 1 if the object is compatible with the given type, and 0 otherwise. The

function lua_isnumber accepts numbers and numerical strings, whereas lua_isstring accepts

strings and numbers (see Section 4.3), and lua_isfunction accepts Lua functions and C functions.

To get the tag of a lua_Object, the following function is available:

int lua_tag (lua_Object object);

18

To translate a value from type lua_Object to a speci�c C type, the programmer can use:

double lua_getnumber (lua_Object object);

char *lua_getstring (lua_Object object);

long lua_strlen (lua_Object object);

lua_CFunction lua_getcfunction (lua_Object object);

void *lua_getuserdata (lua_Object object);

lua_getnumber converts a lua_Object to a
oating-point number. This lua_Object must be

a number or a string convertible to number (see Section 4.3); otherwise, lua_getnumber returns 0.

lua_getstring converts a lua_Object to a string (char*). This lua_Object must be a string

or a number; otherwise, the function returns 0 (the NULL pointer). This function does not create a

new string, but returns a pointer to a string inside the Lua environment. Those strings always have

a 0 after their last character (like in C), but may contain other zeros in their body. If you do not

know whether a string may contain zeros, you can use lua_strlen to get the actual length. Because

Lua has garbage collection, there is no guarantee that the pointer returned by lua_getstring will

be valid after the block ends (see Section 5.3).

lua_getcfunction converts a lua_Object to a C function. This lua_Object must have type

CFunction; otherwise, lua_getcfunction returns 0 (the NULL pointer). The type lua_CFunction

is explained in Section 5.7.

lua_getuserdata converts a lua_Object to void*. This lua_Objectmust have type userdata;

otherwise, lua_getuserdata returns 0 (the NULL pointer).

5.3 Garbage Collection

Because Lua has automatic memory management and garbage collection, a lua_Object has a

limited scope, and is only valid inside the block where it has been created. A C function called

from Lua is a block, and its parameters are valid only until its end. It is good programming practice

to convert Lua objects to C values as soon as they are available, and never to store lua_Objects

in C global variables.

A garbage collection cycle can be forced by:

long lua_collectgarbage (long limit);

This function returns the number of objects collected. The argument limit makes the next cycle

occur only after that number of new objects have been created. If limit=0, then Lua uses an

adaptive heuristics to set this limit.

All communication between Lua and C is done through two abstract data types, called lua2C

and C2lua. The �rst one, as the name implies, is used to pass values from Lua to C: parameters

when Lua calls C and results when C calls Lua. The structure C2lua is used in the reverse direction:

parameters when C calls Lua and results when Lua calls C.

The structure lua2C is an abstract array, which can be indexed with the function:

lua_Object lua_lua2C (int number);

where number starts with 1. When called with a number larger than the array size, this function

returns LUA_NOOBJECT. In this way, it is possible to write C functions that receive a variable number

of parameters, and to call Lua functions that return a variable number of results. Note that the

structure lua2C cannot be directly modi�ed by C code.

The second structure, C2lua, is an abstract stack. Pushing elements into this stack is done with

the following functions:

19

void lua_pushnumber (double n);

void lua_pushlstring (char *s, long len);

void lua_pushstring (char *s);

void lua_pushusertag (void *u, int tag);

void lua_pushnil (void);

void lua_pushobject (lua_Object object);

void lua_pushcfunction (lua_CFunction f); /* macro */

All of them receive a C value, convert it to a corresponding lua_Object, and leave the result on the

top of C2lua. In particular, functions lua_pushlstring and lua_pushstring make an internal

copy of the given string. Function lua_pushstring can only be used to push proper C strings

(that is, strings that do not contain zeros and end with a zero); otherwise you should use the more

generic lua_pushlstring. The function

lua_Object lua_pop (void);

returns a reference to the object at the top of the C2lua stack, and pops it.

As a general rule, all API functions pop from the stack all elements they use.

Because userdata are objects, the function lua_pushusertag may create a new userdata. If

Lua has a userdata with the given value (void*) and tag, that userdata is pushed. Otherwise, a

new userdata is created, with the given value and tag. If this function is called with tag equal to

LUA_ANYTAG, then Lua will try to �nd any userdata with the given value, regardless of its tag. If

there is no userdata with that value, then a new one is created, with tag equal to 0.

Userdata can have di�erent tags, whose semantics are only known to the host program. Tags

are created with the function:

int lua_newtag (void);

The function lua_settag changes the tag of the object on the top of C2lua (and pops it); the

object must be a userdata or a table.

void lua_settag (int tag);

tag must be a value created with lua_newtag.

When C code calls Lua repeatedly, as in a loop, objects returned by these calls can accumulate,

and may cause a stack over
ow. To avoid this, nested blocks can be de�ned with the functions:

void lua_beginblock (void);

void lua_endblock (void);

After the end of the block, all lua_Object's created inside it are released. The use of explicit

nested blocks is good programming practice and is strongly encouraged.

5.4 Executing Lua Code

A host program can execute Lua chunks written in a �le or in a string using the following functions:

int lua_dofile (char *filename);

int lua_dostring (char *string);

int lua_dobuffer (char *buff, int size, char *name);

20

All these functions return an error code: 0, in case of success; non zero, in case of errors. More

speci�cally, lua_dofile returns 2 if for any reason it could not open the �le. When called with

argument NULL, lua_dofile executes the stdin stream. Functions lua_dofile and lua_dobuffer

are both able to execute pre-compiled chunks. They automatically detect whether the chunk is text

or binary, and load it accordingly (see program luac). Function lua_dostring executes only source

code.

The third parameter to lua_dobuffer (name) is the \name of the chunk", used in error messages

and debug information. If name is NULL, Lua gives a default name to the chunk.

These functions return, in structure lua2C, any values eventually returned by the chunks. They

also empty the stack C2lua.

5.5 Manipulating Lua Objects

To read the value of any global Lua variable, one uses the function:

lua_Object lua_getglobal (char *varname);

As in Lua, this function may trigger a tag method. To read the real value of any global variable,

without invoking any tag method, use the raw version:

lua_Object lua_rawgetglobal (char *varname);

To store a value previously pushed onto C2lua in a global variable, there is the function:

void lua_setglobal (char *varname);

As in Lua, this function may trigger a tag method. To set the real value of any global variable,

without invoking any tag method, use the raw version:

void lua_rawsetglobal (char *varname);

Tables can also be manipulated via the API. The function

lua_Object lua_gettable (void);

pops a table and an index from the stack C2lua, and returns the contents of the table at that

index. As in Lua, this operation may trigger a tag method. To get the real value of any table

index, without invoking any tag method, use the raw version:

lua_Object lua_rawgettable (void);

To store a value in an index, the program must push the table, the index, and the value onto

C2lua, and then call the function

void lua_settable (void);

Again, the tag method for \settable" may be called. To set the real value of any table index,

without invoking any tag method, use the raw version:

void lua_rawsettable (void);

Finally, the function

lua_Object lua_createtable (void);

creates and returns a new, empty table.

21

5.6 Calling Lua Functions

Functions de�ned in Lua by a chunk can be called from the host program. This is done using the

following protocol: �rst, the arguments to the function are pushed onto C2lua (see Section 5.3), in

direct order, i.e., the �rst argument is pushed �rst. Then, the function is called using

int lua_callfunction (lua_Object function);

This function returns an error code: 0, in case of success; non zero, in case of errors. Finally,

the results (a Lua function may return many values) are returned in structure lua2C, and can be

retrieved with the macro lua_getresult, which is just another name to function lua_lua2C. Note

that function lua_callfunction pops all elements from the C2lua stack.

The following example shows how a C program may do the equivalent to the Lua code:

a,b = f("how", t.x, 4)

lua_pushstring("how"); /* 1st argument */

lua_pushobject(lua_getglobal("t")); /* push value of global 't' */

lua_pushstring("x"); /* push the string 'x' */

lua_pushobject(lua_gettable()); /* push result of t.x (2nd arg) */

lua_pushnumber(4); /* 3rd argument */

lua_callfunction(lua_getglobal("f")); /* call Lua function */

lua_pushobject(lua_getresult(1)); /* push first result of the call */

lua_setglobal("a"); /* set global variable 'a' */

lua_pushobject(lua_getresult(2)); /* push second result of the call */

lua_setglobal("b"); /* set global variable 'b' */

Some special Lua functions have exclusive interfaces. A C function can generate a Lua error

calling the function

void lua_error (char *message);

This function never returns. If the C function has been called from Lua, then the corresponding

Lua execution terminates, as if an error had occurred inside Lua code. Otherwise, the whole host

program terminates with a call to exit(1). The message is passed to the error handler function,

_ERRORMESSAGE. If message is NULL, then _ERRORMESSAGE is not called.

Tag methods can be changed with:

lua_Object lua_settagmethod (int tag, char *event);

The �rst parameter is the tag, and the second is the event name (see Section 4.8); the new method

is pushed from C2lua. This function returns a lua_Object, which is the old tag method value. To

get just the current value of a tag method, use the function

lua_Object lua_gettagmethod (int tag, char *event);

It is also possible to copy all tag methods from one tag to another:

int lua_copytagmethods (int tagto, int tagfrom);

This function returns tagto.

22

5.7 C Functions

To register a C function to Lua, there is the following macro:

#define lua_register(n,f) (lua_pushcfunction(f), lua_setglobal(n))

/* char *n; */

/* lua_CFunction f; */

which receives the name the function will have in Lua, and a pointer to the function. This pointer

must have type lua_CFunction, which is de�ned as

typedef void (*lua_CFunction) (void);

that is, a pointer to a function with no parameters and no results.

In order to communicate properly with Lua, a C function must follow a protocol, which de�nes

the way parameters and results are passed.

A C function receives its arguments in structure lua2C; to access them, it uses the macro

lua_getparam, again just another name for lua_lua2C. To return values, a C function just pushes

them onto the stack C2lua, in direct order (see Section 5.2). Like a Lua function, a C function

called by Lua can also return many results.

When a C function is created, it is possible to associate some upvalues to it, thus creating a C

closure; then these values are passed to the function whenever it is called, as common arguments.

To associate upvalues to a function, �rst these values must be pushed on C2lua. Then the function

void lua_pushcclosure (lua_CFunction fn, int n);

is used to put the C function on C2lua, with the argument n telling how many upvalues must be as-

sociated with the function; in fact, the macro lua_pushcfunction is de�ned as lua_pushcclosure

with n set to 0. Then, any time the function is called, these upvalues are inserted as the �rst

arguments to the function, before the actual arguments provided in the call.

For some examples of C functions, see �les lstrlib.c, liolib.c and lmathlib.c in the o�cial

Lua distribution.

5.8 References to Lua Objects

As noted in Section 5.3, lua_Objects are volatile. If the C code needs to keep a lua_Object

outside block boundaries, then it must create a reference to the object. The routines to manipulate

references are the following:

int lua_ref (int lock);

lua_Object lua_getref (int ref);

void lua_unref (int ref);

The function lua_ref creates a reference to the object that is on the top of the stack, and returns

this reference. If lock is true, the object is locked : this means the object will not be garbage

collected. Note that an unlocked reference may be garbage collected. Whenever the referenced

object is needed, a call to lua_getref returns a handle to it; if the object has been collected,

lua_getref returns LUA_NOOBJECT.

When a reference is no longer needed, it can be released with a call to lua_unref.

23

6 Prede�ned Functions and Libraries

The set of prede�ned functions in Lua is small but powerful. Most of them provide features that

allow some degree of re
exivity in the language. Some of these features cannot be simulated with

the rest of the language nor with the standard Lua API. Others are just convenient interfaces to

common API functions.

The libraries, on the other hand, provide useful routines that are implemented directly through

the standard API. Therefore, they are not necessary to the language, and are provided as separate

C modules. Currently, there are three standard libraries:

� string manipulation;

� mathematical functions (sin, log, etc);

� input and output (plus some system facilities).

To have access to these libraries, the C host program must call the functions lua_strlibopen,

lua_mathlibopen, and lua_iolibopen, declared in lualib.h.

6.1 Prede�ned Functions

� call (func, arg [, mode [, errhandler]])

Calls function func with the arguments given by the table arg. The call is equivalent to

func(arg[1], arg[2], ..., arg[n])

where n is the result of getn(arg) (see Section 6.1).

By default, all results from func are just returned by the call. If the string mode contains "p",

the results are packed in a single table. That is, call returns just one table; at index n, the table

has the total number of results from the call; the �rst result is at index 1, etc. For instance, the

following calls produce the following results:

a = call(sin, {5}) --> a = 0.0871557 = sin(5)

a = call(max, {1,4,5; n=2}) --> a = 4 (only 1 and 4 are arguments)

a = call(max, {1,4,5; n=2}, "p") --> a = {4; n=1}

t = {x=1}

a = call(next, {t,nil;n=2}, "p") --> a={"x", 1; n=2}

By default, if an error occurs during the function call, the error is propagated. If the string

mode contains "x", then the call is protected. In this mode, function call does not propagate an

error, regardless of what happens during the call. Instead, it returns nil to signal the error (besides

calling the appropriated error handler).

If provided, errhandler is temporarily set as the error function _ERRORMESSAGE, while func

runs. In particular, if errhandler is nil, no error messages will be issued during the execution of

the called function.

� collectgarbage ([limit])

Forces a garbage collection cycle. Returns the number of objects collected. An optional argument,

limit, is a number that makes the next cycle occur only after that number of new objects have

been created. If limit is absent or equal to 0, Lua uses an adaptive algorithm to set this limit.

collectgarbage is equivalent to the API function lua_collectgarbage.

24

� dofile (filename)

Receives a �le name, opens the �le, and executes the �le contents as a Lua chunk, or as pre-

compiled chunks. When called without arguments, dofile executes the contents of the standard

input (stdin). If there is any error executing the �le, then dofile returns nil. Otherwise, it

returns the values returned by the chunk, or a non nil value if the chunk returns no values. It

issues an error when called with a non string argument. dofile is equivalent to the API function

lua_dofile.

� dostring (string [, chunkname])

Executes a given string as a Lua chunk. If there is any error executing the string, dostring returns

nil. Otherwise, it returns the values returned by the chunk, or a non nil value if the chunk returns

no values. An optional second parameter (chunkname) is the \name of the chunk", used in error

messages and debug information. dostring is equivalent to the API function lua_dostring.

� newtag ()

Returns a new tag. newtag is equivalent to the API function lua_newtag.

� next (table, index)

Allows a program to traverse all �elds of a table. Its �rst argument is a table and its second

argument is an index in this table. It returns the next index of the table and the value associated

with the index. When called with nil as its second argument, the function returns the �rst index

of the table (and its associated value). When called with the last index, or with nil in an empty

table, it returns nil.

Lua has no declaration of �elds; semantically, there is no di�erence between a �eld not present

in a table or a �eld with value nil. Therefore, the function only considers �elds with non nil

values. The order in which the indices are enumerated is not speci�ed, even for numeric indices

(to traverse a table in numeric order, use a counter or the function foreachi). If the table indices

are modi�ed in any way during a traversal, the semantics of next is unde�ned.

This function cannot be written with the standard API.

� nextvar (name)

This function is similar to the function next, but iterates instead over the global variables. Its

single argument is the name of a global variable, or nil to get a �rst name. Similarly to next, it

returns the name of another variable and its value, or nil if there are no more variables. There can

be no creation of new global variables during the traversal; otherwise the semantics of nextvar is

unde�ned.

This function cannot be written with the standard API.

� tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format. For complete

control on how numbers are converted, use function format.

25

� print (e1, e2, ...)

Receives any number of arguments, and prints their values using the strings returned by tostring.

This function is not intended for formatted output, but only as a quick way to show a value, for

instance for debugging. See Section 6.4 for functions for formatted output.

� _ALERT (message)

Prints its only string argument to stderr. All error messages in Lua are printed through this

function. Therefore, a program may rede�ne it to change the way such messages are shown (for

instance, for systems without stderr).

� tonumber (e [, base])

Receives one argument, and tries to convert it to a number. If the argument is already a number

or a string convertible to a number, then tonumber returns that number; otherwise, it returns nil.

An optional argument speci�es the base to interpret the numeral. The base may be any integer

between 2 and 36 inclusive. In bases above 10, the letter `A' (either upper or lower case) represents

10, `B' represents 11, and so forth, with `Z' representing 35.

In base 10 (the default), the number may have a decimal part, as well as an optional exponent

part (see Section 4.3). In other bases, only integers are accepted.

� type (v)

Allows Lua to test the type of a value. It receives one argument, and returns its type, coded as

a string. The possible results of this function are "nil" (a string, not the value nil), "number",

"string", "table", "function", and "userdata".

� tag (v)

Allows Lua to test the tag of a value (see Section 3). It receives one argument, and returns its tag

(a number). tag is equivalent to the API function lua_tag.

� settag (t, tag)

Sets the tag of a given table (see Section 3). tag must be a value created with newtag (see

Section 6.1). It returns the value of its �rst argument (the table). For security reasons, it is

impossible to change the tag of a userdata from Lua.

� assert (v [, message])

Issues an \assertion failed!" error when its argument is nil. This function is equivalent to the

following Lua function:

function assert (v, m)

if not v then

m = m or ""

error("assertion failed! " .. m)

end

end

26

� error (message)

Calls the error handler and then terminates the last protected function called (in C: lua_dofile,

lua_dostring, lua_dobuffer, or lua_callfunction; in Lua: dofile, dostring, or call in pro-

tected mode). If message is nil, the error handler is not called. Function error never returns.

error is equivalent to the API function lua_error.

� rawgettable (table, index)

Gets the real value of table[index], without invoking any tag method. table must be a table,

and index is any value di�erent from nil.

� rawsettable (table, index, value)

Sets the real value of table[index] to value, without invoking any tag method. table must be

a table, index is any value di�erent from nil, and value is any Lua value.

� rawsetglobal (name, value)

Assigns the given value to a global variable. The string name does not need to be a syntactically

valid variable name. Therefore, this function can set global variables with strange names like

"m v 1" or 34. Function rawsetglobal returns the value of its second argument.

� setglobal (name, value)

Assigns the given value to a global variable, or calls a tag method. Its full semantics is explained

in Section 4.8. The string name does not need to be a syntactically valid variable name. Function

setglobal returns the value of its second argument.

� rawgetglobal (name)

Retrieves the value of a global variable. The string name does not need to be a syntactically valid

variable name.

� getglobal (name)

Retrieves the value of a global variable, or calls a tag method. Its full semantics is explained in

Section 4.8. The string name does not need to be a syntactically valid variable name.

� settagmethod (tag, event, newmethod)

Sets a new tag method to the given pair (tag, event). It returns the old method. If newmethod is

nil, settagmethod restores the default behavior for the given event.

� gettagmethod (tag, event)

Returns the current tag method for a given pair (tag, event).

� copytagmethods (tagto, tagfrom)

Copies all tag methods from one tag to another; it returns tagto.

27

� getn (table)

Returns the \size" of a table, when seen as a list. If the table has an n �eld with a numeric value,

this is its \size". Otherwise, the size is the largest numerical index with a non-nil value in the table.

This function could be de�ned in Lua:

function getn (t)

if type(t.n) == 'number' then return t.n end

local max = 0

local i = next(t, nil)

while i do

if type(i) == 'number' and i>max then max=i end

i = next(t, i)

end

return max

end

� foreach (table, function)

Executes the given function over all elements of table. For each element, the function is called

with the index and respective value as arguments. If the function returns any non-nil value, the

loop is broken, and the value is returned as the �nal value of foreach.

This function could be de�ned in Lua:

function foreach (t, f)

local i, v = next(t, nil)

while i do

local res = f(i, v)

if res then return res end

i, v = next(t, i)

end

end

� foreachi (table, function)

Executes the given function over the numerical indices of table. For each index, the function is

called with the index and respective value as arguments. Indices are visited in sequential order,

from 1 to n, where n is the result of getn(table) (see Section 6.1). If the function returns any

non-nil value, the loop is broken, and the value is returned as the �nal value of foreachi.

This function could be de�ned in Lua:

function foreachi (t, f)

local i, n = 1, getn(t)

while i <= n do

local res = f(i, t[i])

if res then return res end

i = i+1

end

end

28

� foreachvar (function)

Executes function over all global variables. For each variable, the function is called with its name

and its value as arguments. If the function returns any non-nil value, the loop is broken, and the

value is returned as the �nal value of foreachvar.

This function could be de�ned in Lua:

function foreachvar (f)

local n, v = nextvar(nil)

while n do

local res = f(n, v)

if res then return res end

n, v = nextvar(n)

end

end

� tinsert (table [, pos] , value)

Inserts element value at table position pos, shifting other elements to open space. The default value

for pos is n+1 (where n is the result of getn(table) (see Section 6.1)) so that a call tinsert(t,x)

inserts x at the end of table t.

This function also sets or increments the �eld n of the table, to n+1.

This function is equivalent to the following Lua function, except that the table accesses are all

raw (that is, without tag methods):

function tinsert (t, ...)

local pos, value

local n = getn(t)

if arg.n == 1 then

pos = n+1; value = arg[1]

else

pos = arg[1]; value = arg[2]

end

t.n = n+1;

while n >= pos do

t[n+1] = t[n]

n = n-1

end

t[pos] = value

end

� tremove (table [, pos])

Removes from table the element at position pos, shifting other elements to close the space. Re-

turns the value of the removed element. The default value for pos is n (where n is the result of

getn(table) (see Section 6.1)), so that a call tremove(t) removes the last element of table t.

This function also sets or decrements the �eld n of the table, to n-1.

This function is equivalent to the following Lua function, except that the table accesses are all

raw (that is, without tag methods):

29

function tremove (t, pos)

local n = getn(t)

pos = pos or n

local value = t[pos]

if n<=0 then return end

while pos < n do

t[pos] = t[pos+1]

pos = pos+1

end

t[n] = nil

t.n = n-1

return value

end

� sort (table [, comp])

Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the result

of getn(table) (see Section 6.1). If comp is given, it must be a function that receives two table

elements, and returns true when the �rst is less than the second (so that not comp(a[i+1], a[i])

will be true after the sort). If comp is not given, the standard < Lua operator is used instead.

Function sort returns the (sorted) table.

6.2 String Manipulation

This library provides generic functions for string manipulation, such as �nding and extracting

substrings and pattern matching. When indexing a string, the �rst character is at position 1 (not

at 0, as in C).

� strfind (str, pattern [, init [, plain]])

Looks for the �rst match of pattern in str. If it �nds one, then it returns the indices on str

where this occurrence starts and ends; otherwise, it returns nil. If the pattern speci�es captures,

the captured strings are returned as extra results. A third optional numerical argument speci�es

where to start the search; its default value is 1. If init is negative, it is replaced by the length of

the string minus its absolute value plus 1. Therefore, �1 points to the last character of str. A

value of 1 as a fourth optional argument turns o� the pattern matching facilities, so the function

does a plain \�nd substring" operation, with no characters in pattern being considered \magic".

� strlen (s)

Receives a string and returns its length.

� strsub (s, i [, j])

Returns another string, which is a substring of s, starting at i and running until j. If i or j are

negative, they are replaced by the length of the string minus their absolute value plus 1. Therefore,

�1 points to the last character of s and �2 to the previous one. If j is absent, it is assumed to be

equal to �1 (which is the same as the string length). In particular, the call strsub(s,1,j) returns

a pre�x of s with length j, and the call strsub(s, -i) returns a su�x of s with length i.

30

� strlower (s)

Receives a string and returns a copy of that string with all upper case letters changed to lower case.

All other characters are left unchanged. The de�nition of what is an upper case letter depends on

the current locale.

� strupper (s)

Receives a string and returns a copy of that string with all lower case letters changed to upper

case. All other characters are left unchanged. The de�nition of what is a lower case letter depends

on the current locale.

� strrep (s, n)

Returns a string that is the concatenation of n copies of the string s.

� strbyte (s [, i])

Returns the internal numerical code of the character s[i]. If i is absent, then it is assumed to

be 1. If i is negative, it is replaced by the length of the string minus its absolute value plus 1.

Therefore, �1 points to the last character of s.

Note that numerical codes are not necessarily portable across platforms.

� strchar (i1, i2, ...)

Receives 0 or more integers. Returns a string with length equal to the number of arguments,

wherein each character has the internal numerical code equal to its correspondent argument.

Note that numerical codes are not necessarily portable across platforms.

� format (formatstring, e1, e2, ...)

Returns a formatted version of its variable number of arguments following the description given in

its �rst argument (which must be a string). The format string follows the same rules as the printf

family of standard C functions. The only di�erences are that the options/modi�ers *, l, L, n, p,

and h are not supported, and there is an extra option, q. This option formats a string in a form

suitable to be safely read back by the Lua interpreter: The string is written between double quotes,

and all double quotes, returns and backslashes in the string are correctly escaped when written.

For instance, the call

format('%q', 'a string with "quotes" and \n new line')

will produce the string:

"a string with \"quotes\" and \

new line"

Conversions can be applied to the n-th argument in the argument list, rather than the next

unused argument. In this case, the conversion character % is replaced by the sequence %d$, where

d is a decimal digit in the range [1,9], giving the position of the argument in the argument list.

For instance, the call format("%2$d -> %1$03d", 1, 34) will result in "34 -> 001". The same

argument can be used in more than one conversion.

31

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q

and s expect a string. The * modi�er can be simulated by building the appropriate format string.

For example, "%*g" can be simulated with "%"..width.."g".

Note: function format can only be used with strings that do not contain zeros.

� gsub (s, pat, repl [, n])

Returns a copy of s, where all occurrences of the pattern pat have been replaced by a replace-

ment string speci�ed by repl. This function also returns, as a second value, the total number of

substitutions made.

If repl is a string, then its value is used for replacement. Any sequence in repl of the form %n

with n between 1 and 9 stands for the value of the n-th captured substring.

If repl is a function, then this function is called every time a match occurs, with all captured

substrings passed as arguments, in order (see below). If the value returned by this function is a

string, then it is used as the replacement string; otherwise, the replacement string is the empty

string.

A last optional parameter n limits the maximum number of substitutions to occur. For instance,

when n is 1 only the �rst occurrence of pat is replaced.

Here are some examples:

x = gsub("hello world", "(%w+)", "%1 %1")

--> x="hello hello world world"

x = gsub("hello world", "(%w+)", "%1 %1", 1)

--> x="hello hello world"

x = gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")

--> x="world hello Lua from"

x = gsub("home = $HOME, user = $USER", "%$(%w+)", getenv)

--> x="home = /home/roberto, user = roberto" (for instance)

x = gsub("4+5 = $return 4+5$", "%$(.-)%$", dostring)

--> x="4+5 = 9"

local t = {name="lua", version="3.2"}

x = gsub("$name - $version", "%$(%w+)", function (v) return %t[v] end)

--> x="lua - 3.2"

t = {n=0}

gsub("first second word", "(%w+)", function (w) tinsert(%t, w) end)

--> t={"first", "second", "word"; n=3}

Patterns

Character Class: a character class is used to represent a set of characters. The following

combinations are allowed in describing a character class:

x (where x is any character not in the list ^$()%.[]*+-?) | represents the character x itself.

32

. | (a dot) represents all characters.

%a | represents all letters.

%c | represents all control characters.

%d | represents all digits.

%l | represents all lower case letters.

%p | represents all punctuation characters.

%s | represents all space characters.

%u | represents all upper case letters.

%w | represents all alphanumeric characters.

%x | represents all hexa-decimal digits.

%z | represents the character with representation 0.

%x (where x is any non alphanumeric character) | represents the character x. This is the standard

way to escape the magic characters ()%.[]*-?. It is strongly recommended that any control

character (even the non magic), when used to represent itself in a pattern, should be preceded

by a %.

[char-set] | Represents the class which is the union of all characters in char-set. To include a]

in char-set, it must be the �rst character. A range of characters may be speci�ed by separating

the end characters of the range with a -. If - appears as the �rst or last character of char-set,

then it represents itself. All classes %x described above can also be used as components in

a char-set. All other characters in char-set represent themselves. E.g., assuming an ascii

character set, [%dA-Fa-f] speci�es the hexa-decimal digits.

[^char-set] | represents the complement of char-set, where char-set is interpreted as above.

For all classes represented by single letters (%a, %c, . . .), the correspondent upper-case letter rep-

resents the complement of the class. For instance, %S represents all non-space characters.

The de�nitions of letter, space, etc. depend on the current locale. In particular, the class [a-z]

may not be equivalent to %l. The second form should be preferred for more portable programs.

Pattern Item: a pattern item may be

� a single character class, which matches any single character in the class;

� a single character class followed by *, which matches 0 or more repetitions of characters in

the class. These repetition items will always match the longest possible sequence;

� a single character class followed by +, which matches 1 or more repetitions of characters in

the class. These repetition items will always match the longest possible sequence;

� a single character class followed by -, which also matches 0 or more repetitions of characters

in the class. Unlike *, these repetition items will always match the shortest possible sequence;

33

� a single character class followed by ?, which matches 0 or 1 occurrence of a character in the

class;

� %n , for n between 1 and 9; such item matches a sub-string equal to the n-th captured string

(see below);

� %bxy , where x and y are two distinct characters; such item matches strings that start with

x, end with y, and where the x and y are balanced. That means that, if one reads the string

from left to write, counting plus 1 for an x and minus 1 for a y, the ending y is the �rst

where the count reaches 0. For instance, the item %b() matches expressions with balanced

parentheses.

Pattern: a pattern is a sequence of pattern items. A ^ at the beginning of a pattern anchors the

match at the beginning of the subject string. A $ at the end of a pattern anchors the match at the

end of the subject string.

Captures: a pattern may contain sub-patterns enclosed in parentheses, that describe captures.

When a match succeeds, the sub-strings of the subject string that match captures are stored

(captured) for future use. Captures are numbered according to their left parentheses. For instance,

in the pattern "(a*(.)%w(%s*))", the part of the string matching "a*(.)%w(%s*)" is stored as the

�rst capture (and therefore has number 1); the character matching . is captured with number 2,

and the part matching %s* has number 3.

6.3 Mathematical Functions

This library is an interface to some functions of the standard C math library. In addition, it

registers a tag method for the binary operator ^ that returns xy when applied to numbers x^y.

The library provides the following functions:

abs acos asin atan atan2 ceil cos deg floor log log10

max min mod rad sin sqrt tan frexp ldexp

random randomseed

plus a global variable PI. Most of them are only interfaces to the homonymous functions in the C

library, except that, for the trigonometric functions, all angles are expressed in degrees, not radians.

Functions deg and rad can be used to convert between radians and degrees.

The function max returns the maximum value of its numeric arguments. Similarly, min computes

the minimum. Both can be used with 1, 2 or more arguments.

The functions random and randomseed are interfaces to the simple random generator functions

rand and srand, provided by ANSI C. The function random, when called without arguments,

returns a pseudo-random real number in the range [0; 1). When called with a number n, random

returns a pseudo-random integer in the range [1; n]. When called with two arguments, l and u,

random returns a pseudo-random integer in the range [l; u].

6.4 I/O Facilities

All input and output operations in Lua are done, by default, over two �le handles, one for reading

and one for writing. These handles are stored in two Lua global variables, called _INPUT and

34

_OUTPUT. The global variables _STDIN, _STDOUT and _STDERR are initialized with �le descriptors

for stdin, stdout and stderr. Initially, _INPUT=_STDIN and _OUTPUT=_STDOUT.

A �le handle is a userdata containing the �le stream FILE*, and with a distinctive tag created

by the I/O library. Whenever a �le handle is collected by the garbage collector, its correspondent

stream is automatically closed.

Unless otherwise stated, all I/O functions return nil on failure and some value di�erent from

nil on success.

� openfile (filename, mode)

This function opens a �le, in the mode speci�ed in the string mode. It returns a new �le handle,

or, in case of errors, nil plus a string describing the error. This function does not modify either

_INPUT or _OUTPUT.

The string mode can be any of the following:

"r" read mode;

"w" write mode;

"a" append mode;

"r+" update mode, all previous data is preserved;

"w+" update mode, all previous data is erased;

"a+" append update mode, previous data is preserved, writing is only allowed at the end of �le.

The string mode may also have a b at the end, which is needed in some systems to open the �le in

binary mode.

� closefile (handle)

This function closes the given �le. It does not modify either _INPUT or _OUTPUT.

� readfrom (filename)

This function may be called in two ways. When called with a �le name, it opens the named �le,

sets its handle as the value of _INPUT, and returns this value. It does not close the current input

�le. When called without parameters, it closes the _INPUT �le, and restores stdin as the value of

_INPUT.

If this function fails, it returns nil, plus a string describing the error.

System dependent : if filename starts with a |, then a piped input is opened, via

function popen. Not all systems implement pipes. Moreover, the number of �les that

can be open at the same time is usually limited and depends on the system.

35

� writeto (filename)

This function may be called in two ways. When called with a �le name, it opens the named �le,

sets its handle as the value of _OUTPUT, and returns this value. It does not close the current output

�le. Note that, if the �le already exists, then it will be completely erased with this operation. When

called without parameters, this function closes the _OUTPUT �le, and restores stdout as the value

of _OUTPUT.

If this function fails, it returns nil, plus a string describing the error.

System dependent : if filename starts with a |, then a piped output is opened, via

function popen. Not all systems implement pipes. Moreover, the number of �les that

can be open at the same time is usually limited and depends on the system.

� appendto (filename)

Opens a �le named filename and sets it as the value of _OUTPUT. Unlike the writeto operation,

this function does not erase any previous content of the �le. If this function fails, it returns nil,

plus a string describing the error.

� remove (filename)

Deletes the �le with the given name. If this function fails, it returns nil, plus a string describing

the error.

� rename (name1, name2)

Renames �le named name1 to name2. If this function fails, it returns nil, plus a string describing

the error.

� flush ([filehandle])

Saves any written data to the given �le. If filehandle is not speci�ed,
ushes all open �les. If

this function fails, it returns nil, plus a string describing the error.

� seek (filehandle [, whence] [, offset])

Sets and gets the �le position, measured in bytes from the beginning of the �le, to the position

given by offset plus a base speci�ed by the string whence, as follows:

"set" base is position 0 (beginning of the �le);

"cur" base is current position;

"end" base is end of �le;

In case of success, function seek returns the �nal �le position, measured in bytes from the beginning

of the �le. If the call fails, it returns nil, plus a string describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call seek(file)

returns the current �le position, without changing it; the call seek(file, "set") sets the position

to the beginning of the �le (and returns 0); and the call seek(file, "end") sets the position to

the end of the �le, and returns its size.

36

� tmpname ()

Returns a string with a �le name that can safely be used for a temporary �le. The �le must be

explicitly removed when no longer needed.

� read ([filehandle,] readpattern1, ...)

Reads �le _INPUT, or filehandle if this argument is given, according to read patterns, which

specify how much to read. For each pattern, the function returns a string with the characters read,

even if the pattern succeeds only partially, or nil if the read pattern fails and the result string

would be empty. When called without patterns, it uses a default pattern that reads the next line

(see below).

A read pattern is a sequence of read pattern items. An item may be a single character class

or a character class followed by ?, by *, or by +. A single character class reads the next character

from the input if it belongs to the class, otherwise it fails. A character class followed by ? reads

the next character from the input if it belongs to the class; it never fails. A character class followed

by * reads until a character that does not belong to the class, or end of �le; since it can match a

sequence of zero characters, it never fails. A character class followed by + reads until a character

that does not belong to the class, or end of �le; it fails if it cannot read at least one character. Note

that the behavior of read patterns is slightly di�erent from the regular pattern matching behavior,

where a * expands to the maximum length such that the rest of the pattern does not fail. With

the read pattern behavior there is no need for backtracking the reading.

A pattern item may contain sub-patterns enclosed in curly brackets, that describe skips. Char-

acters matching a skip are read, but are not included in the resulting string.

There are some prede�ned patterns, as follows:

*n" reads a number; this is the only pattern that returns a number instead of a string.

*l" returns the next line (skipping the end of line), or nil on end of �le. This is the default

pattern. It is equivalent to the pattern "[^\n]*{\n}".

a" reads the whole �le. It is equivalent to the pattern ".".

*w" returns the next word (maximal sequence of non white-space characters), skipping spaces if

necessary, or nil on end of �le. It is equivalent to the pattern "{%s*}%S+".

� write ([filehandle,] value1, ...)

Writes the value of each of its arguments to �le _OUTPUT, or to filehandle if this argument is

given. The arguments must be strings or numbers. To write other values, use tostring or format

before write. If this function fails, it returns nil, plus a string describing the error.

� date ([format])

Returns a string containing date and time formatted according to the given string format, following

the same rules of the ANSI C function strftime. When called without arguments, it returns a

reasonable date and time representation that depends on the host system and on the locale.

� clock ()

Returns an approximation of the amount of CPU time used by the program, in seconds.

37

� exit ([code])

Calls the C function exit, with an optional code, to terminate the program. The default value for

code is 1.

� getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not de�ned.

� execute (command)

This function is equivalent to the C function system. It passes command to be executed by an

operating system shell. It returns an error code, which is system-dependent.

� setlocale (locale [, category])

This function is an interface to the ANSI C function setlocale. locale is a string specifying

a locale; category is an optional string describing which category to change: "all", "collate",

"ctype", "monetary", "numeric", or "time"; the default category is "all". The function returns

the name of the new locale, or nil if the request cannot be honored.

7 The Debugger Interface

Lua has no built-in debugging facilities. Instead, it o�ers a special interface, by means of functions

and hooks, which allows the construction of di�erent kinds of debuggers, pro�lers, and other tools

that need \inside information" from the interpreter. This interface is declared in the header �le

luadebug.h.

7.1 Stack and Function Information

The main function to get information about the interpreter stack is

lua_Function lua_stackedfunction (int level);

It returns a handle (lua_Function) to the activation record of the function executing at a given

level. Level 0 is the current running function, while level n + 1 is the function that has called

level n. When called with a level greater than the stack depth, lua_stackedfunction returns

LUA_NOOBJECT.

The type lua_Function is just another name to lua_Object. Although, in this library,

a lua_Function can be used wherever a lua_Object is required, when a parameter has type

lua_Function it accepts only a handle returned by lua_stackedfunction.

Three other functions produce extra information about a function:

void lua_funcinfo (lua_Object func, char **source, int *linedefined);

int lua_currentline (lua_Function func);

char *lua_getobjname (lua_Object o, char **name);

lua_funcinfo gives the source and the line where the given function has been de�ned: If the

function was de�ned in a string, source is that string; If the function was de�ned in a �le, source

starts with a @ followed by the �le name. If the \function" is in fact the main code of a chunk,

38

then linedefined is 0. If the function is a C function, then linedefined is �1, and filename is

"(C)".

The function lua_currentline gives the current line where a given function is executing. It

only works if the function has been compiled with debug information. When no line information is

available, lua_currentline returns �1.

The generation of debug information is controled by an internal
ag, which can be switched

with

int lua_setdebug (int debug);

This function sets the
ag and returns its previous value. This
ag can also be set from Lua (see

Section 4.9).

Function lua_getobjname tries to �nd a reasonable name for a given function. Because func-

tions in Lua are �rst class values, they do not have a �xed name: Some functions may be the value of

many global variables, while others may be stored only in a table �eld. Function lua_getobjname

checks whether the given function is a tag method or the value of a global variable. If the given

function is a tag method, then lua_getobjname returns the string "tag-method", and name is set to

point to the event name. If the given function is the value of a global variable, then lua_getobjname

returns the string "global", and name points to the variable name. If the given function is neither

a tag method nor a global variable, then lua_getobjname returns the empty string, and name is

set to NULL.

7.2 Manipulating Local Variables

The following functions allow the manipulation of the local variables of a given activation record.

They only work if the function has been compiled with debug information (see Section 4.9). More-

over, for these functions, a local variable becomes visible in the line after its de�nition.

lua_Object lua_getlocal (lua_Function func, int local_number, char **name);

int lua_setlocal (lua_Function func, int local_number);

lua_getlocal returns the value of a local variable, and sets name to point to the variable name.

local_number is an index for local variables. The �rst parameter has index 1, and so on, until

the last active local variable. When called with a local_number greater than the number of

active local variables, or if the activation record has no debug information, lua_getlocal returns

LUA_NOOBJECT. Formal parameters are the �rst local variables.

The function lua_setlocal sets the local variable local_number to the value previously pushed

on the stack (see Section 5.2). If the function succeeds, then it returns 1. If local_number is greater

than the number of active local variables, or if the activation record has no debug information, then

this function fails and returns 0.

7.3 Hooks

The Lua interpreter o�ers two hooks for debugging purposes:

typedef void (*lua_CHFunction) (lua_Function func, char *file, int line);

lua_CHFunction lua_setcallhook (lua_CHFunction func);

typedef void (*lua_LHFunction) (int line);

lua_LHFunction lua_setlinehook (lua_LHFunction func);

39

The �rst hook is called whenever the interpreter enters or leaves a function. When entering a

function, its parameters are a handle to the function activation record, plus the �le and the line

where the function is de�ned (the same information which is provided by lua_funcinfo); when

leaving a function, func is LUA_NOOBJECT, file is "(return)", and line is 0.

The other hook is called every time the interpreter changes the line of code it is execut-

ing. Its only parameter is the line number (the same information which is provided by the call

lua_currentline(lua_stackedfunction(0))). This second hook is called only if the active func-

tion has been compiled with debug information (see Section 4.9).

A hook is disabled when its value is NULL, which is the initial value of both hooks. Both

lua_setcallhook and lua_setlinehook set their corresponding hooks and return their previous

values.

7.4 The Re
exive Debugger Interface

The library ldblib provides the functionallity of the debugger interface to Lua programs. If you

want to use this library, your host application must open it, calling lua_dblibopen.

You should exert great care when using this library. The functions provided here should be

used exclusively for debugging and similar tasks (e.g. pro�ling). Please resist the temptation to

use them as a usual programming tool. They are slow and violate some (otherwise) secure aspects

of the language (e.g. privacy of local variables). As a general rule, if your program does not need

this library, do not open it.

� funcinfo (function)

This function returns a table with information about the given function. The table contains the

following �elds:

kind : may be "C", if this is a C function, "chunk", if this is the main part of a chunk, or "Lua"

if this is a Lua function.

source the source where the function was de�ned. If the function was de�ned in a string, source

is that string; If the function was de�ned in a �le, source starts with a @ followed by the �le

name.

def line the line where the function was de�ned in the source (only valid if this is a Lua function).

where can be "global" if this function has a global name, or "tag-method" if this function is a

tag method handler.

name if where = global, name is the global name of the function; if where = tag-method, name

is the event name of the tag method.

� getstack (index)

This function returns a table with informations about the function running at level index of the

stack. Index 0 is the current function (getstack itself). If index is bigger than the number of

active functions, the function returns nil. The table contains all the �elds returned by funcinfo,

plus the following:

func the function at that level.

40

current the current line on the function execution; this will be available only when the function

is precompiled with debug information.

� getlocal (index [, local])

This function returns information about the local variables of the function at level index of the

stack. It can be called in three ways. When called without a local argument, it returns a table,

which associates variable names to their values. When called with a name (a string) as local,

it returns the value of the local variable with that name. Finally, when called with an index

(a number), it returns the value and the name of the local variable with that index. (The �rst

parameter has index 1, and so on, until the last active local variable.) In that case, the function

returns nil if there is no local variable with the given index. The speci�cation by index is the only

way to distinguish homonym variables in a function.

� setlocal (index, local, newvalue)

This function changes the values of the local variables of the function at level index of the stack.

The local variable can be speci�ed by name or by index; see function getlocal.

� setcallhook (hook)

Sets the function hook as the call hook; this hook will be called every time the interpreter starts

and exits the execution of a function. When Lua enters a function, the hook is called with the

function been called, plus the source and the line where the function is de�ned. When Lua exits a

function, the hook is called with no arguments.

When called without arguments, this function turns o� call hooks.

� setlinehook (hook)

Sets the function hook as the line hook; this hook will be called every time the interpreter changes

the line of code it is executing. The only argument to the hook is the line number the interpreter

is about to execut. This hook is called only if the active function has been compiled with debug

information (see Section 4.9).

When called without arguments, this function turns o� line hooks.

8 Lua Stand-alone

Although Lua has been designed as an extension language, the language can also be used as a

stand-alone interpreter. An implementation of such an interpreter, called simply lua, is provided

with the standard distribution. This program can be called with any sequence of the following

arguments:

-v prints version information.

-d turns on debug information.

-e stat executes stat as a Lua chunk.

-i runs interactively, accepting commands from standard input until an EOF. Each line entered is

immediately executed.

41

-q same as -i, but without a prompt (quiet mode).

- executes stdin as a �le.

var=value sets global var with string "value".

filename executes �le filename as a Lua chunk.

When called without arguments, Lua behaves as lua -v -i when stdin is a terminal, and as

lua - otherwise.

All arguments are handled in order. For instance, an invocation like

$ lua -i a=test prog.lua

will �rst interact with the user until an EOF, then will set a to "test", and �nally will run the �le

prog.lua.

When in interactive mode, a multi-line statement can be written �nishing intermediate lines

with a backslash (\). The prompt presented is the value of the global variable _PROMPT. Therefore,

the prompt can be changed like below:

$ lua _PROMPT='myprompt> ' -i

In Unix systems, Lua scripts can be made into executable programs by using the #! form, as

in #!/usr/local/bin/lua.

Acknowledgments

The authors would like to thank CENPES/PETROBRAS which, jointly with TeCGraf, used exten-

sively early versions of this system and gave valuable comments. The authors would also like to

thank Carlos Henrique Levy, who found the name of the game. Lua means moon in Portuguese.

Incompatibilities with Previous Versions

Although great care has been taken to avoid incompatibilities with the previous public versions of

Lua, some di�erences had to be introduced. Here is a list of all these incompatibilities.

Incompatibilities with version 3.1

� In the debug API, the old variables lua_debug, lua_callhook and lua_linehook now live

inside lua_state. Therefore, they are no longer directly accessible, and must be manipulated

only through the new functions lua_setdebug, lua_setcallhook and lua_setlinehook.

� Old pre-compiled code is obsolete, and must be re-compiled.

Incompatibilities with version 3.0

� To support multiple contexts, Lua 3.1 must be explicitly opened before used, with function

lua_open. However, all standard libraries check whether Lua is already opened, so any

existing program that opens at least one standard library before calling Lua does not need

to be modi�ed.

42

� Function dostring no longer accepts an optional second argument, with a temporary error

handler. This facility is now provided by function call.

� Function gsub no longer accepts an optional fourth argument (a callback data, a table).

Closures replace this feature with advantage.

� The syntax for function declaration is now more restricted; for instance, the old syntax

function f[exp] (x) ... end is not accepted in Lua 3.1. In these cases, programs should

use an explicit assignment instead, such as f[exp] = function (x) ... end.

� Old pre-compiled code is obsolete, and must be re-compiled.

� The option a=b in Lua stand-alone now sets a to the string b, and not to the value of b.

43

Index

.. 7

Adjustment 4

Assignment 5

Basic Expressions 6

C pointers 2

C2lua 19

Coercion 4

Comments 3

Expressions 6

Function De�nitions 10

Global variables 1

Identi�ers 2

LUA ANYTAG 20

LUA NOOBJECT 19

Literal strings 3

Local variables 6

Lua Stand-alone 41

Numerical constants 3

Operator precedence 7

PI 34

Pre-processor 3

Types and Tags 1

Upvalues 11

Visibility 11

ERRORMESSAGE 16

INPUT 35

OUTPUT 35

STDERR 35

STDIN 35

STDOUT 35

abs 34

acos 34

add event 12

alert 26

and 7

appendto 36

arguments 10

arg 10

arithmetic operators 6

arrays 2

asin 34

assert 26

associative arrays 2

atan2 34

atan 34

basic types 1

block 4

call 24

captures 34

ceil 34

character class 32

chunk 1

clock 37

close�le 35

closing a �le 36

collectgarbage 24

concatenation event 14

concatenation 7

condition expression 5

constructors 8

copytagmethods 27

cos 34

date 37

debug pragma 17

deg 34

div event 13

do�le 25

dostring 25

eight-bit clean 2

error 27

event 12

execute 38

exit 38

exponentiation 7

�le handles 34

oor 34

ush 36

foreachi 28

foreachvar 29

foreach 28

format 31

frexp 34

funcinfo 40

function call 9

function event 16

function 1

gc event 16

ge event 14

44

getenv 38

getglobal event 14

getglobal 27

getlocal 41

getn 28

getstack 40

gettable event 15

gettagmethod 12

gettagmethod 27

global environment 1

gsub 32

gt event 14

if-then-else 5

index event 14

ldexp 34

le event 14

log10 34

logical operators 7

log 34

lt event 13

lua2C 19

lua CFunction 23

lua Object 18

lua callfunction 22

lua close 18

lua collectgarbage 19

lua copytagmethods 22

lua createtable 21

lua dobu�er 20

lua do�le 20

lua dostring 20

lua error 22

lua getcfunction 19

lua getglobal 21

lua getnumber 19

lua getparam 23

lua getref 23

lua getresult 22

lua getstring 19

lua gettable 21

lua gettagmethod 22

lua getuserdata 19

lua iolibopen 24

lua iscfunction 18

lua isfunction 18

lua isnil 18

lua isnumber 18

lua isstring 18

lua istable 18

lua isuserdata 18

lua lua2C 19

lua mathlibopen 24

lua newtag 20

lua open 17

lua pop 20

lua pushcclosure 23

lua pushcfunction 19

lua pushlstring 19

lua pushnil 19

lua pushnumber 19

lua pushobject 19

lua pushstring 19

lua pushuserdata 19

lua pushusertag 19

lua rawgetglobal 21

lua rawgetglobal 21

lua rawgetglobal 21

lua rawsettable 21

lua ref 23

lua register 23

lua setglobal 21

lua setstate 17

lua settable 21

lua settagmethod 22

lua settag 20

lua state 17

lua strlen 19

lua strlibopen 24

lua tag 18

lua unref 23

luac 1

luac 21

max 34

methods 11

min 34

mod 34

mul event 13

multiple assignment 5

newtag 25

nextvar 25

next 25

nil 1

not 7

number 1

45

open�le 35

or 7

packed results 24

pattern item 33

pattern 34

piped input 35

piped output 36

popen 35

popen 36

pow event 13

pre-compilation 1

prede�ned functions 24

print 26

protected calls 24

rad 34

randomseed 34

random 34

rawgetglobal 27

rawgettable 27

rawsetglobal 27

rawsettable 27

read pattern 37

readfrom 35

read 37

records 2

reference 23

re
exivity 24

relational operators 7

remove 36

rename 36

repeat-until 5

reserved words 2

return statement 5

return 4

seek 36

self 11

setcallhook 41

setglobal event 15

setglobal 27

setlinehook 41

setlocale 38

setlocal 41

settable event 15

settagmethod 12

settagmethod 27

settag 26

short-cut evaluation 7

sin 34

skips 37

sort 30

sqrt 34

statements 4

stderr 26

strbyte 31

strchar 31

str�nd 30

string 1

strlen 30

strlower 31

strrep 31

strsub 30

strupper 31

sub event 13

table 1

tag methods 12

tag 1

tag 26

tan 34

tinsert 29

tmpname 37

tokens 3

tonumber 26

tostring 25

tremove 29

type 26

unm event 13

userdata 1

vararg 10

version 3.0 42

version 3.1 42

while-do 5

writeto 36

write 37

46

