The Programming Language Lua

Reference Manual for Lua version 4.0
Last revised on November 6, 2000

Copyright © 1994-2000 TeCGraf, PUC-Rio. All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to use,
copy, modify, translate, and distribute this software and its documentation (hereby called the ” package”)
for any purpose, including commercial applications, subject to the following conditions:

e The above copyright notice and this permission notice shall appear in all copies or substantial
portions of this package.

e The origin of this package must not be misrepresented; you must not claim that you wrote
the original package. If you use this package in a product, an acknowledgment in the product
documentation would be greatly appreciated (but it is not required).

e Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original package.

The authors specifically disclaim any warranties, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The package provided hereunder is on an “as
is” basis, and the authors have no obligation to provide maintenance, support, updates, enhancements,
or modifications. In no event shall TeCGraf, PUC-Rio, or the authors be held liable to any party for
direct, indirect, special, incidental, or consequential damages arising out of the use of this package and
its documentation.

The Lua language and this implementation have been entirely designed and written by Waldemar Celes,
Roberto Ierusalimschy, and Luiz Henrique de Figueiredo at TeCGraf, PUC-Rio in Brazil.

This implementation contains no third-party code.

Copies of this manual can be obtained at http://www.tecgraf.puc-rio.br/lua/.

The Lua logo was designed by A. Nakonechny. Copyright © 1998. All rights reserved.

Reference Manual of the Programming Language Lua 4.0

Roberto Ierusalimschy Luiz Henrique de Figueiredo Waldemar Celes

lua@tecgraf.puc-rio.br

Te(graf — Computer Science Department — PUC-Rio

$Date: 2000/10/31 18:20:01

Abstract

Lua is a powerful, light-weight programming language designed for extending applications. Lua
is also frequently used as a general-purpose, stand-alone language. Lua combines simple proce-
dural syntax (similar to Pascal) with powerful data description constructs based on associative
arrays and extensible semantics. Lua is dynamically typed, interpreted from bytecodes, and
has automatic memory management with garbage collection, making it ideal for configuration,
scripting, and rapid prototyping.

This document describes version 4.0 of the Lua programming language and the Application
Program Interface (API) that allows interaction between Lua programs and their host C pro-
grams.

Resumo

Lua é uma linguagem de programacdo poderosa e leve, projetada para estender aplicagoes.
Lua também é frequentemente usada como uma linguagem de propdsito geral. Lua combina
programagcdo procedural (com sintaxe semelhante & de Pascal) com poderosas construgdes para
descricao de dados, baseadas em tabelas associativas e seméantica extensivel. Lua é tipada
dinamicamente, interpretada a partir de bytecodes, e tem gerenciamento automéatico de memoria
com coleta de lixo. Essas caracteristicas fazem de Lua uma linguagem ideal para configuracao,
automacao (scripting) e prototipagem répida.

Este documento descreve a versdo 4.0 da linguagem de programacdo Lua e a Interface de
Programagio (API) que permite a interagio entre programas Lua e programas C hospedeiros.

ii

Contents

1 Introduction 1
2 Environment and Chunks 1
3 Types and Tags 2
4 The Language 3
4.1 Lexical Conventions i e 3
4.2 Coercion L e e e e e e e 4
4.3 Adjustment L e 4
4.4 Statements L L e e e 4
4.4.1 Blocks e e e e e e e e e e e e 4

4.4.2 Assignment Lo e 4

4.4.3 Control Structures 5

4.44 For Statement L 5

4.4.5 Function Calls as Statements 0oL, 7

4.4.6 Local Declarationso 7

4.5 EXPressions oL i e e e e e e e 7
4.5.1 Basic Expressions. e 7

4.5.2 Arithmetic Operators o 8

4.5.3 Relational Operators o 8

4.5.4 Logical Operators e 8

4.5.5 Concatenation Lo 9

4.5.6 Precedence 9

4.5.7 Table Constructors 9

4.5.8 Function Calls 10

4.5.9 Function Definitions Lo 11

4.6 Visibility and Upvalues L Lo 13
4.7 Error Handling L 13
4.8 Tag Methods e 14

5 The Application Program Interface 19
5.1 States L e e e e e 19
5.2 The Stack and Indices o . 19
5.3 Stack Manipulationo 20
5.4 Querying the Stack oL 21
5.5 Pushing values onto the Stacko o Lo 22
5.6 Garbage Collection L 22
5.7 Userdata and Tags o . e 23
5.8 Executing Lua Code e 23
5.9 Manipulating Global Variablesin Lua, 24
5.10 Manipulating Tablesin Lua 24
5.11 Using Tables as Arrays o . o i e 25
5.12 Calling Lua Functions 25
5.13 Defining C Functions 27
5.14 References to Lua Objects o o e 28

iii

6 Standard Libraries

6.1 Basic Functions e e e
6.2 String Manipulation Lo
6.3 Mathematical Functions 0 Lo
6.4 I/O Facilities o e
6.5 System Facilitieso

7 The Debug Interface

7.1 Stack and Function Informationo o000,
7.2 Manipulating Local Variables o
7.3 Hooks o e e e e e e e
7.4 The Reflexive Debug Interface L Lo

8 Lua Stand-alone
Incompatibilities with Previous Versions
The Complete Syntax of Lua

Index

v

29
29
34
39
39
41

42
42
44
44
45

46

47

49

50

1 Introduction

Lua is an extension programming language designed to support general procedural programming
with data description facilities. Lua is intended to be used as a powerful, light-weight configuration
language for any program that needs one.

Lua is implemented as a library, written in C. Being an extension language, Lua has no notion
of a “main” program: it only works embedded in a host client, called the embedding program.
This host program can invoke functions to execute a piece of code in Lua, can write and read Lua
variables, and can register C functions to be called by Lua code. Through the use of C functions,
Lua can be augmented to cope with a wide range of different domains, thus creating customized
programming languages sharing a syntactical framework.

Lua is free-distribution software, and is provided as usual with no guarantees, as stated in its
copyright notice. The implementation described in this manual is available at the following URL’s:

http://www.tecgraf.puc-rio.br/lua/
ftp://ftp.tecgraf.puc-rio.br/pub/lua/

Like any other reference manual, this document is dry in places. For a discussion of the decisions
behind the design of Lua, see the papers below, which are available at the web site above.

e R. lerusalimschy, L. H. de Figueiredo, and W. Celes. Lua—an extensible extension language.
Software: Practice & Ezperience 26 #6 (1996) 635-652.

e L. H. de Figueiredo, R. Ierusalimschy, and W. Celes. The design and implementation of a
language for extending applications. Proceedings of XXI Brazilian Seminar on Software and
Hardware (1994) 273-283.

e L. H. de Figueiredo, R. lerusalimschy, and W. Celes. Lua: an extensible embedded language.
Dr. Dobb’s Journal 21 #12 (Dec 1996) 26-33.

2 Environment and Chunks

All statements in Lua are executed in a global environment. This environment is initialized with a
call from the embedding program to lua_open and persists until a call to lua_close, or the end of
the embedding program. If necessary, the host programmer can create multiple independent global
environments, and freely switch between them (see §5.1).

The global environment can be manipulated by Lua code or by the embedding program, which
can read and write global variables using API functions from the library that implements Lua.

Global variables in Lua do not need to be declared. Any variable is assumed to be global unless
explicitly declared local (see §4.4.6). Before the first assignment, the value of a global variable is
nil (this default can be changed; see §4.8). A table is used to keep all global names and values
(tables are explained in §3).

The unit of execution of Lua is called a chunk. A chunk is simply a sequence of statements,
which are executed sequentially. Each statement can be optionally followed by a semicolon:

chunk — {stat [‘;’]}

Statements are described in §4.4. (The notation above is the usual extended BNF, in which {a}
means 0 or more a’s, [a] means an optional a, and {a}* means one or more a’s. The complete
syntax of Lua is given on page 49.)

A chunk may be stored in a file or in a string inside the host program. When a chunk is
executed, first it is pre-compiled into bytecodes for a virtual machine, and then the statements are
executed in sequential order, by simulating the virtual machine. All modifications a chunk effects
on the global environment persist after the chunk ends.

Chunks may also be pre-compiled into binary form and stored in files; see program luac for
details. Text files with chunks and their binary pre-compiled forms are interchangeable. Lua
automatically detects the file type and acts accordingly.

3 Types and Tags

Lua is a dynamically typed language. This means that variables do not have types; only values do.
Therefore, there are no type definitions in the language. All values carry their own type. Besides
a type, all values also have a tag.

There are six basic types in Lua: nil, number, string, function, userdata, and table. Nil is
the type of the value nil, whose main property is to be different from any other value. Number
represents real (double-precision floating-point) numbers, while string has the usual meaning. Lua
is 8-bit clean, and so strings may contain any 8-bit character, including embedded zeros (’\0?)
(see §4.1). The type function returns a string describing the type of a given value (see §6.1).

Functions are considered first-class values in Lua. This means that functions can be stored
in variables, passed as arguments to other functions, and returned as results. Lua can call (and
manipulate) functions written in Lua and functions written in C. The two kinds of functions can
be distinguished by their tags: all Lua functions have the same tag, and all C functions have the
same tag, which is different from the tag of Lua functions. The tag function returns the tag of a
given value (see §6.1).

The type userdata is provided to allow arbitrary C pointers to be stored in Lua variables. This
type corresponds to a void* and has no pre-defined operations in Lua, except assignment and
equality test. However, by using tag methods, the programmer can define operations for userdata
values (see §4.8).

The type table implements associative arrays, that is, arrays that can be indexed not only with
numbers, but with any value (except nil). Therefore, this type may be used not only to represent
ordinary arrays, but also symbol tables, sets, records, graphs, trees, etc. Tables are the main
data structuring mechanism in Lua. To represent records, Lua uses the field name as an index.
The language supports this representation by providing a.name as syntactic sugar for a["name"].
Tables may also carry methods: Because functions are first class values, table fields may contain
functions. The form t:f(x) is syntactic sugar for t.f(t,x), which calls the method f from the
table t passing the table itself as the first parameter (see §4.5.9).

Note that tables are objects, and not values. Variables do not contain tables, only references to
them. Assignment, parameter passing, and returns always manipulate references to tables, and do
not imply any kind of copy. Moreover, tables must be explicitly created before used (see §4.5.7).

Each of the types nil, number, and string has a different tag. All values of each of these types
have the same pre-defined tag. As explained above, values of type function can have two different
tags, depending on whether they are Lua functions or C functions. Finally, values of type userdata
and table can have variable tags, assigned by the programmer (see §4.8). The tag function returns
the tag of a given value. User tags are created with the function newtag. The settag function is
used to change the tag of a table (see §6.1). The tag of userdata values can only be set from C
(see §5.7). Tags are mainly used to select tag methods when some events occur. Tag methods are
the main mechanism for extending the semantics of Lua (see §4.8).

4 The Language

This section describes the lexis, the syntax, and the semantics of Lua.

4.1 Lexical Conventions

Identifiers in Lua can be any string of letters, digits, and underscores, not beginning with a digit.
This coincides with the definition of identifiers in most languages, except that the definition of
letter depends on the current locale: Any character considered alphabetic by the current locale can
be used in an identifier. The following words are reserved, and cannot be used as identifiers:

and break do else elseif
end for function if in
local nil not or repeat
return then until while

Lua is a case-sensitive language: and is a reserved word, but And and and (if the locale permits)
are two different, valid identifiers. As a convention, identifiers starting with underscore followed by
uppercase letters (such as _INPUT) are reserved for internal variables.

The following strings denote other tokens:

= <= >= < >

() { X L

= + - * / %

b b

Literal strings can be delimited by matching single or double quotes, and can contain the C-like
escape sequences ‘\a’ (bell), ‘\b’ (backspace), ‘\f’ (form feed), ‘\n’ (newline), ‘\r’ (carriage return),
‘\t’ (horizontal tab), ‘\v’ (vertical tab), ‘\\’ (backslash), ‘\"’ (double quote), ‘\’’ (single quote),
and ‘\newline’ (that is, a backslash followed by a real newline, which results in a newline in the
string). A character in a string may also be specified by its numerical value, through the escape
sequence ‘\ddd’, where ddd is a sequence of up to three decimal digits. Strings in Lua may contain
any 8-bit value, including embedded zeros, which can be specified as ‘\000’.

Literal strings can also be delimited by matching [[... 1]. Literals in this bracketed form may
run for several lines, may contain nested [[...]] pairs, and do not interpret escape sequences.
This form is specially convenient for writing strings that contain program pieces or other quoted
strings. As an example, in a system using ASCII, the following three literals are equivalent:

1) "alo\n123\""
2) ’\9710\10\04923"°
3) [[alo

123"]]

Comments start anywhere outside a string with a double hyphen (--) and run until the end of
the line. Moreover, the first line of a chunk is skipped if it starts with #. This facility allows the
use of Lua as a script interpreter in Unix systems (see §8).

Numerical constants may be written with an optional decimal part and an optional decimal
exponent. Examples of valid numerical constants are

3 3.0 3.1416 314.16e-2 0.31416E1

4.2 Coercion

Lua provides some automatic conversions between values at run time. Any arithmetic operation
applied to a string tries to convert that string to a number, following the usual rules. Conversely,
whenever a number is used when a string is expected, that number is converted to a string, in a
reasonable format. The format is chosen so that a conversion from number to string then back to
number reproduces the original number ezactly. Thus, the conversion does not necessarily produces
nice-looking text for some numbers. For complete control of how numbers are converted to strings,
use the format function (see §6.2).

4.3 Adjustment

Functions in Lua can return many values. Because there are no type declarations, when a function is
called the system does not know how many values the function will return, or how many parameters
it needs. Therefore, sometimes, a list of values must be adjusted, at run time, to a given length.
If there are more values than are needed, then the excess values are thrown away. If there are less
values than are needed, then the list is extended with as many nil’s as needed. This adjustment
occurs in multiple assignments (see §4.4.2) and in function calls (see §4.5.8).

4.4 Statements

Lua supports an almost conventional set of statements, similar to those in Pascal or C. The con-
ventional commands include assignment, control structures, and procedure calls. Non-conventional
commands include table constructors (see §4.5.7) and local variable declarations (see §4.4.6).

4.4.1 Blocks

A block is a list of statements; syntactically, a block is equal to a chunk:
block — chunk
A block may be explicitly delimited:
stat — do block end

Explicit blocks are useful to control the scope of local variables (see §4.4.6). Explicit blocks are also
sometimes used to add a return or break statement in the middle of another block (see §4.4.3).

4.4.2 Assignment

Lua allows multiple assignment. Therefore, the syntax for assignment defines a list of variables on
the left side and a list of expressions on the right side. The elements in both lists are separated by
commas:
stat — warlistl ‘=" explist]
varlisti — wvar {*,” var}

This statement first evaluates all values on the right side and eventual indices on the left side, and
then makes the assignments. So, the code

i=3
i, a[i] = 4, 20

sets a[3] to 20, but does not affect a[4] because the i in a[i] is evaluated before it is assigned 4.
Multiple assignment can be used to exchange two values, as in

4

X, Y=Y, X

The two lists in a multiple assignment may have different lengths. Before the assignment, the
list of values is adjusted to the length of the list of variables (see §4.3).
A single name can denote a global variable, a local variable, or a formal parameter:

var — name
Square brackets are used to index a table:

var — warorfunc ‘[’ expl ‘1’
varorfunc — wvar | functioncall
The varorfunc should result in a table value, from where the field indexed by the expression exzpl
value gets the assigned value.
The syntax var.NAME is just syntactic sugar for var ["NAME"]:

var — warorfunc ‘.’ name

The meaning of assignments and evaluations of global variables and indexed variables can
be changed by tag methods (see §4.8). Actually, an assignment x = val, where x is a global
variable, is equivalent to a call setglobal("x", val) and an assignment t[i] = val is equivalent
to settable_event (t,i,val). See §4.8 for a complete description of these functions (setglobal
is in the basic library; settable_event is used for explanatory purposes only).

4.4.3 Control Structures

The control structures if, while, and repeat have the usual meaning and familiar syntax

stat — while ezp! do block end
stat — repeat block until expl
stat — if ezpl then block {elseif expl then block} [else block] end

The condition expression expl of a control structure may return any value. All values different
from nil are considered true; only nil is considered false.

The return statement is used to return values from a function or from a chunk. Because
functions or chunks may return more than one value, the syntax for the return statement is

stat — return [ezplist]]

The break statement can be used to terminate the execution of a loop, skipping to the next
statement after the loop:

stat — break

A break ends the innermost enclosing loop (while, repeat, or for).

NOTE: For syntactic reasons, return and break statements can only be written as the last state-
ments of a block. If it is really necessary to return or break in the middle of a block, an explicit
inner block can used, as in the idiom ‘do return end’, because now return is last statement in
the inner block.

4.4.4 For Statement

The for statement has two forms, one for numbers and one for tables.

The numerical for loop has the following syntax:

bl

stat — for name ‘=" expl ‘,’ expl [‘,’ ezpl] do block end

A for statement like
for var = el ,e2, e3 do block end
is equivalent to the code:

do
local var, _limit, _step = tonumber(el), tonumber(e2), tonumber (e3)
if not (var and _limit and _step) then error() end
while (_step>0 and var<=_limit) or (_step<=0 and var>=_limit) do
block
var = var+_step
end
end

Note the following:

e _limit and _step are invisible variables. The names are here for explanatory purposes only.

e The behavior is undefined if you assign to var inside the block.

If the third expression (the step) is absent, then a step of 1 is used.

Both the limit and the step are evaluated only once, before the loop starts.

The variable var is local to the statement; you cannot use its value after the for ends.

e You can use break to exit a for. If you need the value of the index, assign it to another
variable before breaking.

The table for statement traverses all pairs (index,value) of a given table. It has the following
syntax:

b

stat — for mame ‘,’” name in ezpl do block end

A for statement like
for index, value in exp do block end
is equivalent to the code:

do
local _t = exp
local index, value = next(t, nil)
while index do
block
index, value = next(t, index)
end
end

Note the following:

e _t is an invisible variable. The name is here for explanatory purposes only.

e The behavior is undefined if you assign to index inside the block.
e The behavior is undefined if you change the table _t during the traversal.

e The variables index and value are local to the statement; you cannot use their values after
the for ends.

e You can use break to exit a for. If you need the value of index or value, assign them to
other variables before breaking.

e The order that table elements are traversed is undefined, even for numerical indices. If you
want to traverse indices in numerical order, use a numerical for.

4.4.5 Function Calls as Statements

Because of possible side-effects, function calls can be executed as statements:
stat — functioncall

In this case, all returned values are thrown away. Function calls are explained in §4.5.8.

4.4.6 Local Declarations

Local variables may be declared anywhere inside a block. The declaration may include an initial
assignment:

stat — local declist [init]
declist — name {*,” name}
it — ‘=" explistl
If present, an initial assignment has the same semantics of a multiple assignment. Otherwise, all
variables are initialized with nil.
A chunk is also a block, and so local variables can be declared outside any explicit block.
The scope of local variables begins after the declaration and lasts until the end of the block.
Thus, the code local print=print creates a local variable called print whose initial value is that

of the global variable of the same name.

4.5 Expressions
4.5.1 Basic Expressions

The basic expressions in Lua are
ecp — ‘Cexp)
erp — nil

erp — number

erp — literal

erp — var

exp — upvalue

erp — function

erp — functioncall

erp — tableconstructor

Numbers (numerical constants) and literal strings are explained in §4.1; variables are explained
in §4.4.2; upvalues are explained in §4.6; function definitions are explained in §4.5.9; function calls
are explained in §4.5.8. Table constructors are explained in §4.5.7.

An access to a global variable x is equivalent to a call getglobal("x") and an access to an
indexed variable t[i] is equivalent to a call gettable_event(t,i). See §4.8 for a description of
these functions (getglobal is in the basic library; gettable_event is used for explanatory purposes
only).

The non-terminal ezp! is used to indicate that the values returned by an expression must be
adjusted to one single value:

exzpl — exp

4.5.2 Arithmetic Operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), * (multipli-
cation), / (division), and ~ (exponentiation); and unary - (negation). If the operands are numbers,
or strings that can be converted to numbers (according to the rules given in §4.2), then all oper-
ations except exponentiation have the usual meaning. Otherwise, an appropriate tag method is
called (see §4.8). An exponentiation always calls a tag method. The standard mathematical library
redefines this method for numbers, giving the expected meaning to exponentiation (see §6.3).

4.5.3 Relational Operators
The relational operators in Lua are
== V= < > <= >=

These operators return nil as false and a value different from nil as true.

Equality (==) first compares the tags of its operands. If they are different, then the result is
nil. Otherwise, their values are compared. Numbers and strings are compared in the usual way.
Tables, userdata, and functions are compared by reference, that is, two tables are considered equal
only if they are the same table. The operator ~= is exactly the negation of equality (==).

NOTE: The conversion rules of §4.2 do not apply to equality comparisons. Thus, "0"==0 evaluates
to false, and t[0] and t["0"] denote different entries in a table.

The order operators work as follows. If both arguments are numbers, then they are compared as
such. Otherwise, if both arguments are strings, then their values are compared using lexicographical
order. Otherwise, the “It” tag method is called (see §4.8).

4.5.4 Logical Operators

The logical operators in Lua are
and or not

Like the control structures, all logical operators consider nil as false and anything else as true.
The conjunction operator and returns nil if its first argument is nil; otherwise, it returns its
second argument. The disjunction operator or returns its first argument if it is different from nil;
otherwise, it returns its second argument. Both and and or use short-cut evaluation, that is, the
second operand is evaluated only if necessary.
There are two useful Lua idioms that use logical operators. The first idiom is

X =Xo0rv

which is equivalent to
if x == nil then x = v end

This idiom sets x to a default value v when x is not set.
The second idiom is

x = aand b or ¢
which should be read as x = (a and b) or c¢. This idiom is equivalent to
if a then x = b else x = ¢ end

provided that b is not nil.

4.5.5 Concatenation

The string concatenation operator in Lua is denoted by two dots (‘..’). If both operands are
strings or numbers, then they are converted to strings according to the rules in §4.2. Otherwise,
the “concat” tag method is called (see §4.8).

4.5.6 Precedence

Operator precedence in Lua follows the table below, from the lower to the higher priority:

and or

< > <= >= V= ==
+ —_

* /

not - (unary)

~

All binary operators are left associative, except for ~ (exponentiation), which is right associative.

NOTE: The pre-compiler may rearrange the order of evaluation of associative operators (such as . .
or +), as long as these optimizations do not change normal results. However, these optimizations
may change some results if you define non-associative tag methods for these operators.

4.5.7 Table Constructors

Table constructors are expressions that create tables; every time a constructor is evaluated, a new
table is created. Constructors can be used to create empty tables, or to create a table and initialize
some of its fields. The general syntax for constructors is

tableconstructor — ‘{’ fieldlist ‘}’
fieldlist — lfieldlist | ffieldlist | lfieldlist <3’ ffieldlist | ffieldlist *;’ Ifieldlist
lfieldlist — [lfieldlist1]
frieldlist — [ffieldlist1]

The form Ifieldlist1 is used to initialize lists:
lfieldlist1 — exp {*," exp} [*,’]

The expressions in the list are assigned to consecutive numerical indices, starting with 1. For
example,

a = {Ilvlll s Ilv2ll s 34}
is equivalent to

do
local temp = {2}
temp[1] = "v1"

temp[2] = "v2"
temp[3] = 34
a = temp

end

The form ffieldlist1 initializes other fields in a table:
fhieldlist1 — ffield {*,” ffield} [*,’]

field — ‘[exp ‘] ‘=" exp | name ‘=" exp

For example,
a={[f®] =¢g@), x=1, y =3, [0] = b+c}

is equivalent to

do
local temp = {2}
temp[£f(k)] = g(y)
temp.x = 1 -- or temp["x"] =1
temp.y = 3 -- or temp["y"] = 3
temp[0] = b+c
a = temp

end

An expression like {x = 1, y = 4} is in fact syntactic sugar for {["x"] = 1, ["y"] = 4}.
Both forms may have an optional trailing comma, and can be used in the same constructor
separated by a semi-colon. For example, all forms below are correct.

43

= {nan’ Ilbll’}

{type="list"; nan’ nbu}
{£(0), £(1), £(2),; n=3,}

MoM MM
I

4.5.8 Function Calls

A function call in Lua has the following syntax:
functioncall — wvarorfunc args

First, varorfunc is evaluated. If its value has type function, then this function is called, with the
given arguments. Otherwise, the “function” tag method is called, having as first parameter the
value of varorfunc, and then the original call arguments (see §4.8).

The form
functioncall — wvarorfunc ‘:’ name args
can be used to call “methods”. A call v:name(...) is syntactic sugar for v.name(v, ...), except

that v is evaluated only once.

10

Arguments have the following syntax:
args — ‘C [explistl])’
args — tableconstructor
args — literal
explisti — {expl ‘,’} exp
All argument expressions are evaluated before the call. A call of the form f£{. ..} is syntactic sugar
for £({...}), that is, the argument list is a single new table. A call of the form £’...? (or £"..."
or £[[...]]) is syntactic sugar for £(’...”), that is, the argument list is a single literal string.
Because a function can return any number of results (see §4.4.3), the number of results must
be adjusted before they are used (see §4.3). If the function is called as a statement (see §4.4.5),
then its return list is adjusted to 0, thus discarding all returned values. If the function is called in
a place that needs a single value (syntactically denoted by the non-terminal ezp1), then its return
list is adjusted to 1, thus discarding all returned values but the first one. If the function is called
in a place that can hold many values (syntactically denoted by the non-terminal exp), then no
adjustment is made. The only places that can hold many values is the last (or the only) expression
in an assignment, in an argument list, or in the return statement. Here are some examples:

£0) -— adjusted to O results

g(f(), x) -- £f() is adjusted to 1 result

glx, £0O) -- g gets x plus all values returned by f£()
a,b,c = £, x -— f() is adjusted to 1 result (and c gets nil)
a,b,c = x, £() -- f() is adjusted to 2

a,b,c = £(O) -- f() is adjusted to 3

return f() -- returns all values returned by £()

return x,y,f() -- returns a, b, and all values returned by f()

4.5.9 Function Definitions

The syntax for function definition is

function — function ‘C [parlist1] ‘)’ block end
stat — function funcname ‘(' [parlist1] ‘)’ block end

funcname — name | name ‘.’ name | name ‘:’ name

The statement

function £ () ... end
is just syntactic sugar for

f = function () ... end
and the statement

function v.f () ... end
is syntactic sugar for

v.f = function () ... end

11

A function definition is an executable expression, whose value has type function. When Lua
pre-compiles a chunk, all its function bodies are pre-compiled too. Then, whenever Lua executes
the function definition, its upvalues are fixed (see §4.6), and the function is instantiated (or closed).
This function instance (or closure) is the final value of the expression. Different instances of the
same function may have different upvalues.

Parameters act as local variables, initialized with the argument values:

parlisti — ‘...
parlistl — name {*,” name} [,” ‘..."]

When a function is called, the list of arguments is adjusted to the length of the list of parameters

(see §4.3), unless the function is a wararg function, which is indicated by three dots (‘...’) at the

end of its parameter list. A vararg function does not adjust its argument list; instead, it collects all

extra arguments into an implicit parameter, called arg. The value of arg is a table, with a field n

whose value is the number of extra arguments, and the extra arguments at positions 1, 2, ..., n.
As an example, consider the following definitions:

function f(a, b) end
function g(a, b, ...) end
function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters:

CALL PARAMETERS

£(3) a=3, b=nil

(3, 4) a=3, b=4

f(3, 4, 5) a=3, b=4

f(xr(O, 10) a=1, b=10

£f(r()) =1, b=2

g(3) a=3, b=nil, arg={n=0}
g(3, 4) a=3, b=4, arg={n=0}

g(3, 4, 5, 8) a=3, b=4, arg={5, 8; n=2}
g5, r()) a=5, b=1, arg={2, 3; n=2}

Results are returned using the return statement (see §4.4.3). If control reaches the end of a
function without encountering a return statement, then the function returns with no results.
The syntax

funcname — name ‘:’ name

is used for defining methods, that is, functions that have an implicit extra parameter self.
The statement

function v:f (...) ... end
is just syntactic sugar for
v.f = function (self, ...) ... end

Note that the function gets an extra formal parameter called self.

12

4.6 Visibility and Upvalues

A function body may refer to its own local variables (which include its parameters) and to global
variables, as long as they are not shadowed by local variables with the same name from enclosing
functions. A function cannot access a local variable from an enclosing function, since such variables
may no longer exist when the function is called. However, a function may access the wvalue of a
local variable from an enclosing function, using upvalues, whose syntax is

upvalue — ‘4’ name

An upvalue is somewhat similar to a variable expression, but whose value is frozen when the
function wherein it appears is instantiated. The name used in an upvalue may be the name of
any variable visible at the point where the function is defined, that is, global variables and local
variables from the immediately enclosing function. Note that when the upvalue is a table, only
the reference to that table (which is the value of the upvalue) is frozen; the table contents can be
changed at will. Using table values as upvalues is a technique for having writable but private state
attached to functions.

Here are some examples:

a,b,c =1,2,3 -- global variables
local d
function f (x)
local b = {} -- x and b are local to f; b shadows the global b
local g = function (a)
local y -- a and y are local to g
p=a -- 0K, access local ‘a’
p=c -- OK, access global ‘c’
p=0>O -- ERROR: cannot access a variable in outer scope
p=%b -- 0K, access frozen value of ‘b’ (local to ‘f’)
hb =3 -- ERROR: cannot change an upvalue
%b.x = 3 -- OK, change the table contents
P = c -- OK, access frozen value of global ‘c’
p=hy -- ERROR: ‘y’ is not visible where ‘g’ is defined
p='%d -- ERROR: ‘d’ is not visible where ‘g’ is defined
end - g
end - f

4.7 Error Handling

Because Lua is an extension language, all Lua actions start from C code in the host program calling
a function from the Lua library. Whenever an error occurs during Lua compilation or execution,
the function _ERRORMESSAGE is called (provided it is different from nil), and then the corresponding
function from the library (lua_dofile, lua_dostring, lua_dobuffer, or lua_call) is terminated,
returning an error condition.

Memory allocation errors are an exception to the previous rule. When memory allocation fails,
Lua may not be able to execute the _ERRORMESSAGE function. So, for this kind of error, Lua does
not call the _ERRORMESSAGE function; instead, the corresponding function from the library returns
immediately with a special error code (LUA_ERRMEM). This and other error codes are defined in
lua.h; §5.8.

13

The only argument to _ERRORMESSAGE is a string describing the error. The default definition for
this function calls _ALERT, which prints the message to stderr (see §6.1). The standard I/O library
redefines _ERRORMESSAGE and uses the debug facilities (see §7) to print some extra information, such
as a call stack traceback.

Lua code can explicitly generate an error by calling the function error (see §6.1). Lua code
can “catch” an error using the function call (see §6.1).

4.8 Tag Methods

Lua provides a powerful mechanism to extend its semantics, called tag methods. A tag method is
a programmer-defined function that is called at specific key points during the execution of a Lua
program, allowing the programmer to change the standard Lua behavior at these points. Each of
these points is called an event.

The tag method called for any specific event is selected according to the tag of the values
involved in the event (see §3). The function settagmethod changes the tag method associated with
a given pair (tag, event). Its first parameter is the tag, the second parameter is the event name
(a string; see below), and the third parameter is the new method (a function), or nil to restore
the default behavior for the pair. The settagmethod function returns the previous tag method for
that pair. A companion function gettagmethod receives a tag and an event name and returns the
current method associated with the pair.

Tag methods are called in the following events, identified by the given names. The semantics
of tag methods is better explained by a Lua function describing the behavior of the interpreter at
each event. This function not only shows when a tag method is called, but also its arguments, its
results, and the default behavior. The code shown here is only illustrative; the real behavior is hard
coded in the interpreter, and it is much more efficient than this simulation. All functions used in
these descriptions (rawget, tonumber, call, etc.) are described in §6.1.

“add”: called when a + operation is applied to non-numerical operands.

The function getbinmethod below defines how Lua chooses a tag method for a binary op-
eration. First, Lua tries the first operand. If its tag does not define a tag method for the
operation, then Lua tries the second operand. If it also fails, then it gets a tag method from
tag 0.

function getbinmethod (opl, op2, event)
return gettagmethod(tag(opl), event) or
gettagmethod(tag(op2), event) or
gettagmethod(0, event)
end

Using this function, the tag method for the “add” event is

function add_event (opl, op2)
local ol, 02 = tonumber(opl), tonumber (op2)
if ol and 02 then -- both operands are numeric
return ol+o2 -- ’+’ here is the primitive ’add’
else -- at least one of the operands is not numeric
local tm = getbinmethod(opl, op2, "add")
if tm then

14

-- call the method with both operands and an extra
-- argument with the event name
return tm(opl, op2, "add")

else -- no tag method available: default behavior
error ("unexpected type at arithmetic operation'")
end
end

end

“sub”: called when a - operation is applied to non-numerical operands. Behavior similar to the
“add” event.

“mul”: called when a * operation is applied to non-numerical operands. Behavior similar to the
“add” event.

“div”: called when a / operation is applied to non-numerical operands. Behavior similar to the
“add” event.

“pow”: called when a "~ operation (exponentiation) is applied, even for numerical operands.

function pow_event (opl, op2)
local tm = getbinmethod(opl, op2, "pow")
if tm then
-- call the method with both operands and an extra
-- argument with the event name
return tm(opl, op2, "pow")

else -- no tag method available: default behavior
error ("unexpected type at arithmetic operation'")
end
end

“unm”: called when a unary - operation is applied to a non-numerical operand.

function unm_event (op)
local o = tonumber (op)

if o then -- operand is numeric
return -o -- ’-’ here is the primitive ’unm’
else -- the operand is not numeric.

-- Try to get a tag method from the operand;
-— if it does not have one, try a "global" one (tag 0)
local tm = gettagmethod(tag(op), "unm") or
gettagmethod (0, "unm")
if tm then
-- call the method with the operand, nil, and an extra
-- argument with the event name
return tm(op, nil, "unm")

else -- no tag method available: default behavior
error ("unexpected type at arithmetic operation")
end

15

end
end

“1t”: called when an order operation is applied to non-numerical or non-string operands. It corre-
sponds to the < operator.

function 1t_event (opl, op2)

if type(opl) == "number" and type(op2) == "number" then
return opl < op2 -- numeric comparison
elseif type(opl) == "string" and type(op2) == "string" then
return opl < op2 -- lexicographic comparison
else
local tm = getbinmethod(opl, op2, "1t")
if tm then
return tm(opl, op2, "1t")
else
error ("unexpected type at comparison");
end
end
end

The other order operators use this tag method according to the usual equivalences:

a>b <=> Db<a
a<=b <=> not (b<a)
a>=b <=> not (a<b)

“concat”: called when a concatenation is applied to non-string operands.

function concat_event (opl, op2)

if (type(opl) == "string" or type(opl) == "number") and
(type(op2) == "string" or type(op2) == "number") then
return opl..op2 -- primitive string concatenation
else
local tm = getbinmethod(opl, op2, "concat")
if tm then
return tm(opl, op2, "concat")
else
error ("unexpected type for concatenation")
end
end
end

“index”: called when Lua tries to retrieve the value of an index not present in a table. See the
“gettable” event for its semantics.

“getglobal”: called whenever Lua needs the value of a global variable. This method can only be
set for nil and for tags created by newtag. Note that the tag is that of the current value of
the global variable.

16

function getglobal (varname)
-- access the table of globals
local value = rawget(globals(), varname)
local tm = gettagmethod(tag(value), "getglobal")
if not tm then
return value
else
return tm(varname, value)
end
end

The function getglobal is defined in the basic library (see §6.1).

“setglobal”: called whenever Lua assigns to a global variable. This method cannot be set for
numbers, strings, and tables and userdata with the default tag.

function setglobal (varname, newvalue)
local oldvalue = rawget(globals(), varname)
local tm = gettagmethod(tag(oldvalue), "setglobal")
if not tm then
rawset (globals(), varname, newvalue)
else
tm(varname, oldvalue, newvalue)
end
end

The function setglobal is defined in the basic library (see §6.1).

“gettable”: called whenever Lua accesses an indexed variable. This method cannot be set for
tables with the default tag.

function gettable_event (table, index)
local tm = gettagmethod(tag(table), "gettable")

if tm then

return tm(table, index)
elseif type(table) "= "table" then

error ("indexed expression not a table");
else

local v = rawget(table, index)
tm = gettagmethod(tag(table), "index")

if v == nil and tm then
return tm(table, index)
else
return v
end
end
end

17

“settable”: called when Lua assigns to an indexed variable. This method cannot be set for tables
with the default tag.

function settable_event (table, index, value)
local tm = gettagmethod(tag(table), "settable")

if tm then
tm(table, index, value)
elseif type(table) “= "table" then
error ("indexed expression not a table")
else
rawset (table, index, value)
end
end

“function”: called when Lua tries to call a non-function value.

function function_event (func, ...)
if type(func) == "function" then
return call(func, arg)
else
local tm = gettagmethod(tag(func), "function")
if tm then
for i=arg.n,1,-1 do
argl[i+1] = argli]
end
arg.n = arg.n+l
arg[1] = func
return call(tm, arg)
else
error("call expression not a function")
end
end
end

“ge”: called when Lua is “garbage collecting” a userdata. This tag method can be set only from C,

and cannot be set for a userdata with the default tag. For each userdata to be collected, Lua
does the equivalent of the following function:

function gc_event (obj)
local tm = gettagmethod(tag(obj), "gc")
if tm then
tm(obj)
end
end

In a garbage-collection cycle, the tag methods for userdata are called in reverse order of tag
creation, that is, the first tag methods to be called are those associated with the last tag
created in the program. Moreover, at the end of the cycle, Lua does the equivalent of the call
gc_event(nil).

18

5 The Application Program Interface

This section describes the API for Lua, that is, the set of C functions available to the host program
to communicate with Lua. All API functions and related types and constants are declared in the
header file 1ua.h.

NOTE: Even when we use the term “function”, any facility in the APT may be provided as a macro
instead. All such macros use each of its arguments exactly once, and so do not generate hidden
side-effects.

5.1 States

The Lua library is fully reentrant: it does not have any global variables. The whole state of the
Lua interpreter (global variables, stack, tag methods, etc.) is stored in a dynamically allocated
structure of type lua_State; this state must be passed as the first argument to every function in
the library (except lua_open below).

Before calling any API function, you must create a state by calling

lua_State *lua_open (int stacksize);

The sole argument to this function is the stack size for the interpreter. (Each function call needs
one stack position for each argument, local variable, and temporary value, plus one position for
book-keeping. The stack must also have some 20 extra positions available. For very small imple-
mentations, without recursive functions, a stack size of 100 should be enough.) If stacksize is
zero, then a default size of 1024 is used.

To release a state created with lua_open, call

void lua_close (lua_State *L);

This function destroys all objects in the given Lua environment (calling the corresponding garbage-
collection tag methods, if any) and frees all dynamic memory used by that state. Usually, you
do not need to call this function, because all resources are naturally released when your program
ends. On the other hand, long-running programs — like a daemon or a web server — might need
to release states as soon as they are not needed, to avoid growing too big.

With the exception of lua_open, all functions in the Lua API need a state as their first argument.

5.2 The Stack and Indices

Lua uses a stack to pass values to and from C. Each element in this stack represents a Lua value
(nil, number, string, etc.).

For convenience, most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack by using an index: A positive index represents
an absolute stack position (starting at 1, not 0 as in C); a negative index represents an offset from
the top of the stack. More specifically, if the stack has n elements, index 1 represents the first
element (that is, the first element pushed onto the stack), and index n represents the last element;
index —1 also represents the last element (that is, the element at the top), and index —n represents
the first element. We say that an index is walid if it lays between 1 and the stack top (that is, if
1 <= abs(index) <= top).

At any time, you can get the index of the top element by calling

int lua_gettop (lua_State *L);

19

Because indices start at 1, the result of lua_gettop is equal to the number of elements in the stack
(and so 0 means an empty stack).

When you interact with Lua API, you are responsible for controlling stack overflow. The
function

int lua_stackspace (lua_State *L);

returns the number of stack positions still available. Whenever Lua calls C, it ensures that at least
LUA_MINSTACK positions are still available. LUA_MINSTACK is defined in lua.h and is at least 16,
and so you have to worry about stack space only when your code has loops pushing elements onto
the stack.

Most query functions accept as indices any value inside the available stack space. Such indices
are called acceptable indices. More formally, we can define an acceptable index as

(index < 0 && abs(index) <= top) || (index > O && index <= top + stackspace)

Note that 0 is not an acceptable index.

5.3 Stack Manipulation

The APIT offers the following functions for basic stack manipulation:

void lua_settop (lua_State *L, int index);
void lua_pushvalue (lua_State *L, int index);
void lua_remove (lua_State *L, int index);
void lua_insert (lua_State *L, int index);

lua_settop accepts any acceptable index, or 0, and sets the stack top to that index. If the
new top is larger than the old one, then the new elements are filled with nil. If index is 0, then
all stack elements are removed. A useful macro defined in the API is

#define lua_pop(L,n) lua_settop(L, -(n)-1)

which pops n elements from the stack.

lua_pushvalue pushes onto the stack a copy of the element at the given index. lua_remove
removes the element at the given position, shifting down the elements on top of that position to
fill in the gap. 1ua_insert moves the top element into the given position, shifting up the elements
on top of that position to open space. These functions accept only valid indices. As an example, if
the stack starts as 10 20 30 40 50 (from bottom to top), then

lua_pushvalue(L, 3) --> 10 20 30 40 50 30
lua_pushvalue(L, -1) --> 10 20 30 40 50 30 30
lua_remove (L, -3) --> 10 20 30 40 30 30
lua_remove(L, 6) --> 10 20 30 40 30
lua_insert(L, 1) --> 30 10 20 30 40
lua_insert (L, -1) --> 30 10 20 30 40 (no effect)
lua_settop(L, -3) --> 30 10 20

lua_settop(L, 6) -=> 30 10 20 nil nil nil

20

5.4 Querying the Stack

To check the type of a stack element, the following functions are available:

int lua_type (lua_State
int lua_tag (lua_State
int lua_isnil (lua_State
int lua_isnumber (lua_State
int lua_isstring (lua_State
int lua_istable (lua_State
int lua_isfunction (lua_State
int lua_iscfunction (lua_State
int lua_isuserdata (lua_State

*L,
*L,
*L,,
*L,
xL,,
*L,
*L,
*L.,
*L,

These functions can be called with any acceptable index.

int
int
int
int
int
int
int
int
int

index) ;
index) ;
index) ;
index) ;
index) ;
index) ;
index) ;
index) ;
index) ;

lua_type returns one of the following constants, according to the type of the given object:
LUA_TNIL, LUA_TNUMBER, LUA_TSTRING, LUA_TTABLE, LUA_TFUNCTION, LUA_TUSERDATA. If the index
is non-valid (that is, if that stack position is “empty”), then lua_type returns LUA_TNONE. These

constants can be converted to strings with

const char *lua_typename (lua_State *L, int t);

where t is a type returned by lua_type. The strings returned by lua_typename are "nil",
"number", "string", "table", "function", "userdata", and "no value",

lua_tag returns the tag of a value, or LUA_NOTAG for a non-valid index.

The lua_is* functions return 1 if the object is compatible with the given type, and 0 otherwise.
They always return 0 for a non-valid index. lua_isnumber accepts numbers and numerical strings,
lua_isstring accepts strings and numbers (see §4.2), and lua_isfunction accepts both Lua
functions and C functions. To distinguish between Lua functions and C functions, you should use
lua_iscfunction. To distinguish between numbers and numerical strings, you can use lua_type.

The API also has functions to compare two values in the stack:

int lua_equal (lua_State *L, int index1, int index2);
int lua_lessthan (lua_State *L, int indexl, int index2);

These functions are equivalent to their counterparts in Lua. Specifically, lua_lessthan is equivalent
to the 1t_event described in §4.8. Both functions return 0 if any of the indices are non-valid.
To translate a value in the stack to a specific C type, you can use the following conversion

functions:
double lua_tonumber (lua_State
const char *lua_tostring (lua_State
size_t lua_strlen (lua_State
lua_CFunction 1lua_tocfunction (lua_State
void xlua_touserdata (lua_State

*L,,
*L,
*L,
*L,,
*L,

int
int
int
int
int

index) ;
index) ;
index);
index) ;
index) ;

These functions can be called with any acceptable index. When called with a non-valid index, they

act as if the given value had an incorrect type.

lua_tonumber converts the value at the given index to a floating-point number. This value
must be a number or a string convertible to number (see §4.2); otherwise, lua_tonumber returns 0.

21

lua_tostring converts a Lua value to a string (const char*). This value must be a string or
a number; otherwise, the function returns NULL. This function returns a pointer to a string inside
the Lua environment. Those strings always have a zero (’\0’) after their last character (as in C),
but may contain other zeros in their body. If you do not know whether a string may contain zeros,
you should use lua_strlen to get its actual length. Because Lua has garbage collection, there is
no guarantee that the pointer returned by lua_tostring will be valid after the respective value is
removed from the stack.

lua_tocfunction converts a value in the stack to a C function. This value must be a C function;
otherwise, lua_tocfunction returns NULL. The type lua_CFunction is explained in §5.13.

lua_touserdata converts a value to void*. This value must have type userdata; otherwise,
lua_touserdata returns NULL.

5.5 Pushing values onto the Stack

The API has the following functions to push C values onto the stack:

void lua_pushnumber (lua_State *L, double n);

void lua_pushlstring (lua_State *L, const char *s, size_t len);
void lua_pushstring (lua_State *L, const char *s);

void lua_pushusertag (lua_State *L, void *u, int tag);

void lua_pushnil (lua_State *L);

void lua_pushcfunction (lua_State *L, lua_CFunction f);

These functions receive a C value, convert it to a corresponding Lua value, and push the result
onto the stack. In particular, lua_pushlstring and lua_pushstring make an internal copy of
the given string. lua_pushstring can only be used to push proper C strings (that is, strings that
end with a zero and do not contain embedded zeros); otherwise you should use the more general
lua_pushlstring, which accepts an explicit size.

5.6 Garbage Collection

Lua uses two numbers to control its garbage collection. One number counts how many bytes of
dynamic memory Lua is using, and the other is a threshold. (This internal byte counter kept by Lua
is not completely acurate; it is just a lower bound, usually within 10% of the correct value.) When
the number of bytes crosses the threshold, Lua runs a garbage-collection cycle, which reclaims the
memory of all “dead” objects (that is, objects no longer accessible from Lua). The byte counter is
corrected, and then the threshold is reset to twice the value of the byte counter.

You can access the current values of these two numbers through the following functions:

int lua_getgccount (lua_State *L);
int 1lua_getgcthreshold (lua_State *L);

Both return their respective values in Kbytes. You can change the threshold value with
void lua_setgcthreshold (lua_State *L, int newthreshold) ;

Again, the newthreshold value is given in Kbytes. When you call this function, Lua sets the new
threshold and checks it against the byte counter. If the new threshold is smaller than the byte
counter, then Lua immediately runs the garbage collector; after the collection, a new threshold is
set according to the previous rule.

22

If you want to change the adaptative behavior of the garbage collector, you can use the garbage-
collection tag method for nil to set your own threshold (the tag method is called after Lua resets
the threshold).

5.7 Userdata and Tags

Because userdata are objects, the function lua_pushusertag may create a new userdata. If Lua
has a userdata with the given value (voidx) and tag, then that userdata is pushed. Otherwise, a
new userdata is created, with the given value and tag. If this function is called with tag equal to
LUA_ANYTAG, then Lua will try to find any userdata with the given value, regardless of its tag. If
there is no userdata with that value, then a new one is created, with tag equal to 0.

Userdata can have different tags, whose semantics are only known to the host program. Tags
are created with the function

int lua_newtag (lua_State *L);
The function lua_settag changes the tag of the object on top of the stack (without popping it):
void lua_settag (lua_State *L, int tag);

The object must be a userdata or a table; the given tag must be a value created with lua_newtag.

5.8 Executing Lua Code

A host program can execute Lua chunks written in a file or in a string by using the following
functions:

int lua_dofile (lua_State *L, const char *filename);

int lua_dostring (lua_State *L, const char *string);

int lua_dobuffer (lua_State *L, const char *buff,
size_t size, const char *name);

These functions return 0 in case of success, or one of the following error codes if they fail:
e LUA_ERRRUN — error while running the chunk.
e LUA_ERRSYNTAX — syntax error during pre-compilation.

o LUA_ERRMEM — memory allocation error. For such errors, Lua does not call _ERRORMESSAGE
(see §4.7).

e LUA_ERRERR — error while running _ERRORMESSAGE. For such errors, Lua does not call
_ERRORMESSAGE again, to avoid loops.

e LUA_ERRFILE — error opening the file (only for lua_dofile). In this case, you may want to
check errno, call strerror, or call perror to tell the user what went wrong.

These constants are defined in lua.h.

When called with argument NULL, lua_dofile executes the stdin stream. lua_dofile and
lua_dobuffer are both able to execute pre-compiled chunks. They automatically detect whether
the chunk is text or binary, and load it accordingly (see program luac). lua_dostring executes
only source code, given in textual form.

23

The third parameter to lua_dobuffer is the “name of the chunk”, which is used in error
messages and debug information. If name is NULL, then Lua gives a default name to the chunk.

These functions push onto the stack any values eventually returned by the chunk. A chunk
may return any number of values; Lua takes care that these values fit into the stack space, but
after the call the responsibility is back to you. If you need to push other elements after calling
any of these functions, and you want to “play safe”, you must either check the stack space with
lua_stackspace or remove the returned elements from the stack (if you do not need them). For
instance, the following code loads a chunk in a file and discards all results returned by this chunk,
leaving the stack as it was before the call:

{
int oldtop = lua_gettop(L);
lua_dofile(L, filename);
lua_settop(L, oldtop);
}
5.9 Manipulating Global Variables in Lua
To read the value of a global Lua variable, you call

void lua_getglobal (lua_State *L, const char *varname) ;

which pushes onto the stack the value of the given variable. As in Lua, this function may trigger a
tag method for the “getglobal” event (see §4.8). To read the real value of a global variable, without
invoking any tag method, use lua_rawget over the table of globals (see below).

To store a value in a global variable, you call

void lua_setglobal (lua_State *L, const char *varname) ;

which pops from the stack the value to be stored in the given variable. As in Lua, this function

may trigger a tag method for the “setglobal” event (see §4.8). To set the real value of a global

variable, without invoking any tag method, use lua_rawset over the table of globals (see below).
All global variables are kept in an ordinary Lua table. You can get this table calling

void lua_getglobals (lua_State *L);

which pushes the current table of globals onto the stack. To set another table as the table of
globals, you call

void lua_setglobals (lua_State *L);

The table to be used is popped from the stack.

5.10 Manipulating Tables in Lua

Lua tables can also be manipulated through the API.
To read the value of in a table, the table must reside somewhere in the stack. With this set,
you call

void lua_gettable (lua_State *L, int index);

24

where index refers to the table. lua_gettable pops a key from the stack, and returns (on the
stack) the contents of the table at that key. As in Lua, this operation may trigger a tag method
for the “gettable” event. To get the real value of any table key, without invoking any tag method,
use the raw version:

void lua_rawget (lua_State *L, int index);

To store a value into a table that resides somewhere in the stack, you push the key and the
value onto the stack (in this order), and then call

void lua_settable (lua_State *L, int index);

where index refers to the table. lua_settable pops from the stack both the key and the value.
As in Lua, this operation may trigger a tag method for the “settable” event. To set the real value
of any table index, without invoking any tag method, use the raw version:

void lua_rawset (lua_State *L, int index);
Finally, the function
void lua_newtable (lua_State *L);

creates a new, empty table and pushes it onto the stack.

5.11 Using Tables as Arrays

The API has functions that help to use Lua tables as arrays, that is, tables indexed by numbers
only:

void lua_rawgeti (lua_State *L, int index, int n);
void lua_rawseti (lua_State *L, int index, int n);
int 1lua_getn (lua_State *L, int index);

lua_rawgeti gets the value of the n-th element of the table at stack position index.

lua_rawseti sets the value of the n-th element of the table at stack position index to the value
at the top of the stack.

lua_getn returns the number of elements in the table at stack position index. This number is
the value of the table field n, if it has a numeric value, or the largest numerical index with a non-nil
value in the table.

5.12 Calling Lua Functions

Functions defined in Lua (and C functions registered in Lua) can be called from the host program.
This is done using the following protocol: First, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed (see §5.5) in direct order, that is, the first argument
is pushed first. Finally, the function is called using

int lua_call (lua_State *L, int nargs, int nresults);

This function returns the same error codes as lua_dostring and friends (see §5.8). If you want to
propagate the error, instead of returning an error code, use

void lua_rawcall (lua_State *L, int nargs, int nresults);

25

In both functions, nargs is the number of arguments that you pushed onto the stack. All
arguments and the function value are popped from the stack, and the function results are pushed.
The number of results are adjusted (see §4.3) to nresults, unless nresults is LUA_MULTRET. In
that case, all results from the function are pushed. The function results are pushed in direct order
(the first result is pushed first), so that after the call the last result is on the top.

The following example shows how the host program may do the equivalent to the Lua code:

a,b = f("how", t.x, 4)

Here it is in C:

lua_getglobal(L, "t"); /* global ‘t’ (for later use) */
lua_getglobal(L, "f"); /* function to be called */
lua_pushstring(L, "how"); /* 1st argument */
lua_pushstring(L, "x"); /* push the string ‘x’ */
lua_gettable(L, -4); /* push result of t.x (2nd arg) */
lua_pushnumber (L, 4); /* 3rd argument */
lua_call(L, 3, 2); /* call function with 3 arguments and 2 results */
lua_setglobal(L, "b"); /* set global variable ‘b’ */
lua_setglobal(L, "a"); /* set global variable ‘a’ */
lua_pop(L, 1); /* remove ‘t’ from the stack */

Notice that the code above is “balanced”: at its end ,the stack is back to its original configuration.
This is considered good programming practice.

Some special Lua functions have their own C interfaces. The host program can generate a Lua
error calling the function

void lua_error (lua_State *L, const char *message);

This function never returns. If lua_error is called from a C function that has been called from
Lua, then the corresponding Lua execution terminates, as if an error had occurred inside Lua code.
Otherwise, the whole host program terminates with a call to exit (EXIT_FAILURE). Before termi-
nating execution, the message is passed to the error handler function, _ERRORMESSAGE (see §4.7).
If message is NULL, then _ERRORMESSAGE is not called.

Tag methods can be changed with
void lua_settagmethod (lua_State *L, int tag, const char *event);

The second parameter is the tag, and the third is the event name (see §4.8); the new method is
popped from the stack. To get the current value of a tag method, use the function

void lua_gettagmethod (lua_State *L, int tag, const char *event);
It is also possible to copy all tag methods from one tag to another:
int lua_copytagmethods (lua_State *L, int tagto, int tagfrom);

This function returns tagto.

You can traverse a table with the function

int lua_next (lua_State *L, int index);

26

where index refers to the table to be traversed. The function pops a key from the stack, and pushes
a key-value pair from the table (the “next” pair after the given key). If there are no more elements,
then the function returns 0 (and pushes nothing). A typical traversal looks like this:

/* table is in the stack at index ‘t’ */
lua_pushnil(L); /* first key */
while (lua_next(L, t) !'= 0) {
/* ‘key’ is at index -2 and ‘value’ at index -1 */
printf ("%s - %s\n",
lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1)));
lua_pop(L, 1); /* removes ‘value’; keeps ‘index’ for next iteration */

}
The function
void lua_concat (lua_State *L, int n);

concatenates the n values at the top of the stack, pops them, and leaves the result at the top;
n must be at least 2. Concatenation is done following the usual semantics of Lua (see §4.5.5).

5.13 Defining C Functions

To register a C function to Lua, there is the following convenience macro:

#define lua_register(L, n, f) (lua_pushcfunction(L, f), lua_setglobal(L, n))
/* const char *n; x/
/* lua_CFunction f; */

which receives the name the function will have in Lua, and a pointer to the function. This pointer
must have type lua_CFunction, which is defined as

typedef int (*1lua_CFunction) (lua_State *L);

that is, a pointer to a function with integer result and a single argument, a Lua environment.

In order to communicate properly with Lua, a C function must follow the following protocol,
which defines the way parameters and results are passed: A C function receives its arguments from
Lua in the stack, in direct order (the first argument is pushed first). To return values to Lua, a
C function just pushes them onto the stack, in direct order (the first result is pushed first), and
returns the number of results. Like a Lua function, a C function called by Lua can also return
many results.

As an example, the following function receives a variable number of numerical arguments and
returns their average and sum:

static int foo (lua_State *L) {

int n = lua_gettop(L); /* number of arguments */
double sum = O;
int i;

for (i = 1; i <= n; i++) {
if (!'lua_isnumber (L, i))
lua_error(L, "incorrect argument to function ‘average’");
sum += lua_tonumber (L, i);

27

}

lua_pushnumber (L, sum/n); /* first result */
lua_pushnumber (L, sum); /* second result */
return 2; /* number of results */

}
This function may be registered in Lua as ‘average’ by calling
lua_register(L, "average", foo);

When a C function is created, it is possible to associate some upvalues to it (see §4.6), thus
creating a C closure; these values are passed to the function whenever it is called, as ordinary
arguments. To associate upvalues to a C function, first these values should be pushed onto the
stack. Then the function

void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);

is used to push the C function onto the stack, with the argument n telling how many upvalues
should be associated with the function (these upvalues are popped from the stack); in fact, the
macro lua_pushcfunction is defined as lua_pushcclosure with n set to 0. Then, whenever the
C function is called, these upvalues are inserted as the last arguments to the function, after the
actual arguments provided in the call. This makes it easy to get the upvalues without knowing
how many arguments the function received (recall that functions in Lua can receive any number
of arguments): The i-th upvalue is in the stack at index ¢ — (n + 1), where n is the number of
upvalues.

For more examples of C functions and closures, see files 1baselib.c, 1liolib.c, Imathlib.c,
and 1strlib.c in the official Lua distribution.

5.14 References to Lua Objects

If the C code needs to keep a Lua value outside the life span of a C function, then it must create
a reference to the value. The functions to manipulate references are the following:

int lua_ref (lua_State *L, int lock);
int lua_getref (lua_State *L, int ref);
void lua_unref (lua_State *L, int ref);

lua_ref pops a value from the stack, creates a reference to it, and returns this reference. For
a nil value, the reference is always LUA_REFNIL. (lua.h also defines a constant LUA_NOREF that is
different from any valid reference.) If lock is not zero, then the object is locked: this means the
object will not be garbage collected. Unlocked references may be garbage collected.

Whenever the referenced object is needed in C, a call to lua_getref pushes that object onto
the stack; if the object has been collected, lua_getref returns 0 (and does not push anything).

When a reference is no longer needed, it should be released with a call to 1ua_unref.

Registry
When Lua starts, it registers a table at position LUA_REFREGISTRY. It can be accessed through the

macro

#define lua_getregistry(L) lua_getref (L, LUA_REFREGISTRY)

This table can be used by C libraries as a general registry mechanism. Any C library can store
data into this table, as long as it chooses a key different from other libraries.

28

6 Standard Libraries

The standard libraries provide useful functions that are implemented directly through the standard
API. Therefore, they are not necessary to the language, and are provided as separate C modules.
Currently, Lua has the following standard libraries:

e basic library;

e string manipulation;

e mathematical functions (sin, log, etc);

e input and output (plus some system facilities).
To have access to these libraries, the C host program must call the functions lua_baselibopen,
lua_strlibopen, lua_mathlibopen, and lua_iolibopen, which are declared in lualib.h.

6.1 Basic Functions

The basic library provides some core functions to Lua. Therefore, if you do not include this library
in your application, you should check carefully whether you need to provide some alternative
implementation for some facilities. (For instance, without function _ERRORMESSAGE, Lua is unable
to show error messages.)

o _ALERT (message)

Prints its only string argument to stderr. All error messages in Lua are printed through the
function stored in the _ALERT global variable (see §4.7). Therefore, a program may assign another
function to this variable to change the way such messages are shown (for instance, for systems
without stderr).

e assert (v [, messagel])

Issues an “assertion failed!” error when its argument v is nil. This function is equivalent to the
following Lua function:

function assert (v, m)
if not v then

m=mor ""
error ("assertion failed! " .. m)
end
end

e call (func, arg [, mode [, errhandler]])

Calls function func with the arguments given by the table arg. The call is equivalent to

func(argl1], argl[2], ..., arglnl)

29

where n is the result of getn(arg) (see §6.1). All results from func are simply returned by call.

By default, if an error occurs during the call to func, the error is propagated. If the string
mode contains "x", then the call is protected. In this mode, function call does not propagate an
error, regardless of what happens during the call. Instead, it returns nil to signal the error (besides
calling the appropriated error handler).

If errhandler is provided, the error function _ERRORMESSAGE is temporarily set to errhandler,
while func runs. In particular, if errhandler is nil, no error messages will be issued during the
execution of the called function.

e collectgarbage ([limit])

Sets the garbage-collection threshold for the given limit (in Kbytes), and checks it against the byte
counter. If the new threshold is smaller than the byte counter, then Lua immediately runs the
garbage collector (see §5.6). If 1imit is absent, it defaults to zero (thus forcing a garbage-collection
cycle).

e copytagmethods (tagto, tagfrom)

Copies all tag methods from one tag to another; returns tagto.

e dofile (filename)

Receives a file name, opens the named file, and executes its contents as a Lua chunk, or as pre-
compiled chunks. When called without arguments, dofile executes the contents of the standard
input (stdin). If there is any error executing the file, then dofile returns nil. Otherwise, it
returns the values returned by the chunk, or a non-nil value if the chunk returns no values. It
issues an error when called with a non-string argument.

e dostring (string [, chunkname])

Executes a given string as a Lua chunk. If there is any error executing the string, then dostring
returns nil. Otherwise, it returns the values returned by the chunk, or a non-nil value if the chunk
returns no values. The optional parameter chunkname is the “name of the chunk”, used in error
messages and debug information.

e error (message)

Calls the error handler (see §4.7) and then terminates the last protected function called (in C:
lua_dofile, lua_dostring, lua_dobuffer, or lua_callfunction; in Lua: dofile, dostring, or
call in protected mode). If message is nil, then the error handler is not called. Function error
never returns.

e foreach (table, func)

Executes the given func over all elements of table. For each element, the function is called with
the index and respective value as arguments. If the function returns any non-nil value, then the
loop is broken, and this value is returned as the final value of foreach. This function could be
defined in Lua:

30

function foreach (t, f)
for i, v in t do
local res = f(i, v)
if res then return res end
end
end

The behavior of foreach is undefined if you change the table t during the traversal.

e foreachi (table, func)

Executes the given func over the numerical indices of table. For each index, the function is called
with the index and respective value as arguments. Indices are visited in sequential order, from 1 to
n, where n is the result of getn(table) (see §6.1). If the function returns any non-nil value, then
the loop is broken, and this value is returned as the final value of foreachi. This function could
be defined in Lua:

function foreachi (t, f)
for i=1,getn(t) do
local res = f(i, t[i])
if res then return res end
end
end

e getglobal (name)

Gets the value of a global variable, or calls a tag method for “getglobal”. Its full semantics is
explained in §4.8. The string name does not need to be a syntactically valid variable name.

e getn (table)

Returns the “size” of a table, when seen as a list. If the table has an n field with a numeric value,
this value is the “size” of the table. Otherwise, the “size” is the largest numerical index with a
non-nil value in the table. This function could be defined in Lua:

function getn (t)
if type(t.n) == "number" then return t.n end
local max = 0O
for i, _ in t do
if type(i) == "number" and i>max then max=i end
end
return max
end

e gettagmethod (tag, event)

Returns the current tag method for a given pair (tag, event). This function cannot be used to get
a tag method for the “gc” event. (Such tag methods can only be manipulated by C code.)

31

e globals ([table])

Returns the current table of globals. If the argument table is given, then it also sets this table as
the table of globals.

e newtag ()

Returns a new tag.

e next (table, [index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second argument
is an index in this table. next returns the next index of the table and the value associated with the
index. When called with nil as its second argument, next returns the first index of the table and
its associated value. When called with the last index, or with nil in an empty table, next returns
nil. If the second argument is absent, then it is interpreted as nil.

Lua has no declaration of fields; semantically, there is no difference between a field not present
in a table or a field with value nil. Therefore, next only considers fields with non-nil values. The
order in which the indices are enumerated is not specified, even for numeric indices (to traverse a
table in numeric order, use a numerical for or the function foreachi).

The behavior of next is undefined if you change the table during the traversal.

e print (el, e2, ...)

Receives any number of arguments, and prints their values using the strings returned by tostring.
This function is not intended for formatted output, but only as a quick way to show a value, for
instance for debugging. See §6.4 for functions for formatted output.

e rawget (table, index)

Gets the real value of table[index], without invoking any tag method. table must be a table,
and index is any value different from nil.

e rawset (table, index, value)

Sets the real value of table[index] to value, without invoking any tag method. table must be
a table, index is any value different from nil, and value is any Lua value.

e setglobal (name, value)

Sets the named global variable to the given value, or calls a tag method for “setglobal”. Its full
semantics is explained in §4.8. The string name does not need to be a syntactically valid variable
name.

e settag (t, tag)

Sets the tag of a given table (see §3). tag must be a value created with newtag (see §6.1). settag
returns the value of its first argument (the table). For the safety of host programs, it is impossible
to change the tag of a userdata from Lua.

32

e settagmethod (tag, event, newmethod)

Sets a new tag method to the given pair (tag, event) and returns the old method. If newmethod
is nil, then settagmethod restores the default behavior for the given event. This function cannot
be used to set a tag method for the “gc” event. (Such tag methods can only be manipulated by
C code.)

e sort (table [, comp])

Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the result
of getn(table) (see §6.1). If comp is given, then it must be a function that receives two table
elements, and returns true (that is, a value different from nil) when the first is less than the second
(so that not comp(ali+1], al[il) will be true after the sort). If comp is not given, then the
standard Lua operator < is used instead.

The sort algorithm is not stable (that is, elements considered equal by the given order may
have their relative positions changed by the sort).

e tag (v)

Allows Lua programs to test the tag of a value (see §3). It receives one argument, and returns its
tag (a number).

e tonumber (e [, basel)

Tries to convert its argument to a number. If the argument is already a number or a string
convertible to a number, then tonumber returns that number; otherwise, it returns nil.

An optional argument specifies the base to interpret the numeral. The base may be any integer
between 2 and 36, inclusive. In bases above 10, the letter ‘A’ (either upper or lower case) repre-
sents 10, ‘B’ represents 11, and so forth, with ‘Z’ representing 35. In base 10 (the default), the
number may have a decimal part, as well as an optional exponent part (see §4.2). In other bases,
only unsigned integers are accepted.

e tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format. For complete
control of how numbers are converted, use function format.

e tinsert (table [, pos] , value)

Inserts element value at table position pos, shifting other elements to open space, if necessary.
The default value for pos is n+1, where n is the result of getn(table) (see §6.1), so that a call
tinsert (t,x) inserts x at the end of table t. This function also sets or increments the field n of
the table to n+1. This function is equivalent to the following Lua function, except that the table
accesses are all raw (that is, without tag methods):

function tinsert (t, ...)
local pos, value
local n = getn(t)
if arg.n == 1 then
pos, value = n+l, arg[i]

33

else
pos, value = arg[l], arg[2]
end
t.n = n+i;
for i=n,pos,-1 do
t[i+1] = t[i]
end
t [pos] = value
end

e tremove (table [, pos])

Removes from table the element at position pos, shifting other elements to close the space, if
necessary. Returns the value of the removed element. The default value for pos is n, where n is
the result of getn(table) (see §6.1), so that a call tremove (t) removes the last element of table
t. This function also sets or decrements the field n of the table to n-1.

This function is equivalent to the following Lua function, except that the table accesses are all
raw (that is, without tag methods):

function tremove (t, pos)
local n = getn(t)
if n<=0 then return end
pos = pos or n
local value = t[pos]
for i=pos,n-1 do
t[i] = t[i+1]
end
t[n] = nil
t.n = n-1
return value
end

e type (v)

Allows Lua programs to test the type of a value. It receives one argument, and returns its type,
coded as a string. The possible results of this function are "nil" (a string, not the value nil),
"number", "string", "table", "function", and "userdata".

6.2 String Manipulation

This library provides generic functions for string manipulation, such as finding and extracting
substrings and pattern matching. When indexing a string in Lua, the first character is at position 1
(not at 0, as in C). Also, indices are allowed to be negative and are intepreted as indexing backwards,
from the end of the string. Thus, the last character is at position —1, and so on.

e strbyte (s [, il)

Returns the internal numerical code of the i-th character of s. If i is absent, then it is assumed to
be 1. i may be negative.

34

NOTE: Numerical codes are not necessarily portable across platforms.

e strchar (i1, i2, ...)

Receives 0 or more integers. Returns a string with length equal to the number of arguments,
wherein each character has the internal numerical code equal to its correspondent argument.

NOTE: Numerical codes are not necessarily portable across platforms.

e strfind (s, pattern [, init [, plain]])

Looks for the first match of pattern in s. If it finds one, then strfind returns the indices of s
where this occurrence starts and ends; otherwise, it returns nil. If the pattern specifies captures
(see gsub below), the captured strings are returned as extra results. A third, optional numerical
argument init specifies where to start the search; its default value is 1, and may be negative. A
value of 1 as a fourth, optional argument plain turns off the pattern matching facilities, so the
function does a plain “find substring” operation, with no characters in pattern being considered
“magic”. Note that if plain is given, then init must be given too.

e strlen (s)
Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are
counted, and so "a\000b\000c" has length 5.

e strlower (s)

Receives a string and returns a copy of that string with all upper case letters changed to lower case.
All other characters are left unchanged. The definition of what is an upper-case letter depends on
the current locale.

e strrep (s, n)

Returns a string that is the concatenation of n copies of the string s.

e strsub (s, i [, j1)

Returns another string, which is a substring of s, starting at i and running until j; i and j may
be negative, If j is absent, then it is assumed to be equal to —1 (which is the same as the string
length). In particular, the call strsub(s,1,j) returns a prefix of s with length j, and the call
strsub(s, -i) returns a suffix of s with length 1.

e strupper (s)

Receives a string and returns a copy of that string with all lower case letters changed to upper
case. All other characters are left unchanged. The definition of what is a lower case letter depends
on the current locale.

35

e format (formatstring, el, e2, ...)

Returns a formatted version of its variable number of arguments following the description given in
its first argument (which must be a string). The format string follows the same rules as the printf
family of standard C functions. The only differences are that the options/modifiers *, 1, L, n, p,
and h are not supported, and there is an extra option, q. The q option formats a string in a form
suitable to be safely read back by the Lua interpreter: The string is written between double quotes,
and all double quotes, returns, and backslashes in the string are correctly escaped when written.
For instance, the call

format(’%q’, ’a string with "quotes" and \n new line’)
will produce the string:

"a string with \"quotes\" and \
new line"

Conversions can be applied to the n-th argument in the argument list, rather than the next
unused argument. In this case, the conversion character % is replaced by the sequence %d$, where
d is a decimal digit in the range [1,9], giving the position of the argument in the argument list.
For instance, the call format ("%2$d -> %1$03d", 1, 34) will result in "34 -> 001". The same
argument can be used in more than one conversion.

The options c, 4, E, e, £, g, G, i, o, u, X, and x all expect a number as argument, whereas q
and s expect a string. The * modifier can be simulated by building the appropriate format string.
For example, "%*g" can be simulated with "%"..width.."g".

NOTE: Neither the format string nor the string values to be formatted with %s can contain em-
bedded zeros. %q handles string values with embedded zeros.

e gsub (s, pat, repl [, nl)

Returns a copy of s in which all occurrences of the pattern pat have been replaced by a replacement
string specified by repl. gsub also returns, as a second value, the total number of substitutions
made.

If repl is a string, then its value is used for replacement. Any sequence in repl of the form %n
with n between 1 and 9 stands for the value of the n-th captured substring.

If repl is a function, then this function is called every time a match occurs, with all captured
substrings passed as arguments, in order (see below). If the value returned by this function is a
string, then it is used as the replacement string; otherwise, the replacement string is the empty
string.

The last, optional parameter n limits the maximum number of substitutions to occur. For
instance, when n is 1 only the first occurrence of pat is replaced.

Here are some examples:

M
I

gsub("hello world", "(%w+)", "%1 %1")
--> x="hello hello world world"

x = gsub("hello world", "(Jw+)", "%1 %1", 1)
--> x="hello hello world"
x = gsub("hello world from Lua", "(%w+)%s*x(hw+)", "%2 %1")

36

--> x="wyorld hello Lua from"

x = gsub("home = $HOME, user = $USER", "%$(Jw+)", getenv)
--> x="home = /home/roberto, user = roberto" (for instance)

x = gsub("4+5 = $return 4+5%", "%$(.-)%$", dostring)
——> x="4+45 = 9"

local t = {name="lua", version="4.0"}
x = gsub("$name - $version", "%$(%w+)", function (v) return %t[v] end)
——> x="lua - 4.0"

t = {n=0}
gsub("first second word", "(%w+)", function (w) tinsert()t, w) end)
-=> t={"first", "second", "word"; n=3}

Patterns

Character Class: a character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

x (where z is any magic characters ~$()%. [1*+-7) — represents the character z itself.
. — (a dot) represents all characters.

%a — represents all letters.

%c — represents all control characters.

%d — represents all digits.

%1 — represents all lower case letters.

%p — represents all punctuation characters.

%s — represents all space characters.

%u — represents all upper case letters.

%w — represents all alphanumeric characters.

%x — represents all hexadecimal digits.

%z — represents the character with representation 0.

%z (where z is any non-alphanumeric character) — represents the character z. This is the standard
way to escape the magic characters. We recommend that any punctuation character (even
the non magic) should be preceded by a % when used to represent itself in a pattern.

[char-set] — represents the class which is the union of all characters in char-set. A range of
characters may be specified by separating the end characters of the range with a -. All classes
%z described above may also be used as components in a char-set. All other characters in

37

char-set represent themselves. For example, [%w_] (or [_%w]) represents all alphanumeric
characters plus the underscore, [0-7] represents the octal digits, and [0-7%1%-] represents
the octal digits plus the lower case letters plus the - character.

The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z] or
[a-%%] have no meaning.

[“char-set] — represents the complement of char-set, where char-set is interpreted as above.

For all classes represented by single letters (%a, %c, ...), the corresponding upper-case letter rep-
resents the complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, etc. depend on the current locale. In particular, the class [a-z]
may not be equivalent to %1. The second form should be preferred for portability.

Pattern Item: a pattern item may be
e 3 single character class, which matches any single character in the class;

e 3 single character class followed by *, which matches 0 or more repetitions of characters in
the class. These repetition items will always match the longest possible sequence;

e 3 single character class followed by +, which matches 1 or more repetitions of characters in
the class. These repetition items will always match the longest possible sequence;

e a single character class followed by -, which also matches 0 or more repetitions of characters
in the class. Unlike *, these repetition items will always match the shortest possible sequence;

e a single character class followed by ?, which matches 0 or 1 occurrence of a character in the
class;

e /n, for n between 1 and 9; such item matches a sub-string equal to the n-th captured string
(see below);

e /bzy, where z and y are two distinct characters; such item matches strings that start with z,
end with y, and where the z and y are balanced. This means that, if one reads the string
from left to right, counting +1 for an £ and —1 for a y, the ending y is the first y where the
count reaches 0. For instance, the item %b() matches expressions with balanced parentheses.

Pattern: a pattern is a sequence of pattern items. A ~ at the beginning of a pattern anchors the
match at the beginning of the subject string. A $ at the end of a pattern anchors the match at
the end of the subject string. At other positions, ~ and $ have no special meaning and represent
themselves.

Captures: A pattern may contain sub-patterns enclosed in parentheses, they describe captures.
When a match succeeds, the sub-strings of the subject string that match captures are stored
(captured) for future use. Captures are numbered according to their left parentheses. For instance,
in the pattern " (a*(.)%w(%s*))", the part of the string matching "a* (.)%w(%s*)" is stored as the
first capture (and therefore has number 1); the character matching . is captured with number 2,
and the part matching %s* has number 3.

NOTE: A pattern cannot contain embedded zeros. Use %z instead.

38

6.3 Mathematical Functions

This library is an interface to some functions of the standard C math library. In addition, it
registers a tag method for the binary operator ~ that returns z¥ when applied to numbers x"y.
The library provides the following functions:

abs acos asin atan atan2 ceil cos deg exp floor 1log 1logl0
max min mod rad sin sqrt tan frexp 1ldexp random randomseed

plus a global variable PI. Most of them are only interfaces to the homonymous functions in the
C library, except that, for the trigonometric functions, all angles are expressed in degrees, not
radians. The functions deg and rad can be used to convert between radians and degrees.

The function max returns the maximum value of its numeric arguments. Similarly, min computes
the minimum. Both can be used with 1, 2, or more arguments.

The functions random and randomseed are interfaces to the simple random generator functions
rand and srand, provided by ANSI C. (No guarantees can be given for their statistical properties.)
The function random, when called without arguments, returns a pseudo-random real number in the
range [0,1). When called with a number n, random returns a pseudo-random integer in the range
[1,n]. When called with two arguments, [and u, random returns a pseudo-random integer in the
range [I,u].

6.4 1I/0 Facilities

All input and output operations in Lua are done, by default, over two file handles, one for reading
and one for writing. These handles are stored in two Lua global variables, called _INPUT and
_QUTPUT. The global variables _STDIN, _STDOUT, and _STDERR are initialized with file descriptors
for stdin, stdout, and stderr. Initially, _INPUT=_STDIN and _OUTPUT=_STDOUT.

A file handle is a userdata containing the file stream (FILE*), and with a distinctive tag created
by the I/O library.

Unless otherwise stated, all I/O functions return nil on failure and some value different from
nil on success.

e openfile (filename, mode)

This function opens a file, in the mode specified in the string mode. It returns a new file handle,
or, in case of errors, nil plus a string describing the error. This function does not modify either
_INPUT or _OUTPUT.

The mode string can be any of the following:

1355

r” read mode;

“w” write mode;

“a” append mode;

“r+” update mode, all previous data is preserved;

“w+” update mode, all previous data is erased;

“a4” append update mode, previous data is preserved, writing is only allowed at the end of file.

The mode string may also have a b at the end, which is needed in some systems to open the file in
binary mode. This string is exactlty what is used in the standard C function fopen.

39

e closefile (handle)

This function closes the given file. It does not modify either _INPUT or _OUTPUT.

e readfrom (filename)

This function may be called in two ways. When called with a file name, it opens the named file,
sets its handle as the value of _INPUT, and returns this value. It does not close the current input
file. When called without parameters, it closes the _INPUT file, and restores stdin as the value of
_INPUT. If this function fails, it returns nil, plus a string describing the error.

NOTE: If filename starts with a |, then a piped input is opened, via function popen. Not all
systems implement pipes. Moreover, the number of files that can be open at the same time is
usually limited and depends on the system.

o writeto (filename)

This function may be called in two ways. When called with a file name, it opens the named file,
sets its handle as the value of _OUTPUT, and returns this value. It does not close the current output
file. Note that, if the file already exists, then it will be completely erased with this operation. When
called without parameters, this function closes the _OUTPUT file, and restores stdout as the value
of _OUTPUT. If this function fails, it returns nil, plus a string describing the error.

NOTE: If filename starts with a |, then a piped input is opened, via function popen. Not all
systems implement pipes. Moreover, the number of files that can be open at the same time is
usually limited and depends on the system.

e appendto (filename)

Opens a file named filename and sets it as the value of _QUTPUT. Unlike the writeto operation,
this function does not erase any previous contents of the file; instead, anything written to the file
is appended to its end. If this function fails, it returns nil, plus a string describing the error.

e remove (filename)

Deletes the file with the given name. If this function fails, it returns nil, plus a string describing
the error.

e rename (namel, name?2)

Renames file named namel to name2. If this function fails, it returns nil, plus a string describing
the error.

e flush ([filehandle])

Saves any written data to the given file. If filehandle is not specified, then f1ush flushes all open
files. If this function fails, it returns nil, plus a string describing the error.

40

e seek (filehandle [, whence] [, offset])

Sets and gets the file position, measured in bytes from the beginning of the file, to the position
given by offset plus a base specified by the string whence, as follows:

“set” base is position 0 (beginning of the file);

“cur” base is current position;

“end” base is end of file;

In case of success, function seek returns the final file position, measured in bytes from the beginning
of the file. If the call fails, it returns nil, plus a string describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call seek(file)
returns the current file position, without changing it; the call seek(file, "set") sets the position
to the beginning of the file (and returns 0); and the call seek(file, "end") sets the position to
the end of the file, and returns its size.

e tmpname ()
Returns a string with a file name that can safely be used for a temporary file. The file must be
explicitly opened before its use and removed when no longer needed.

e read ([filehandle,] formatl, ...)

Reads file _INPUT, or filehandle if this argument is given, according to the given formats, which
specify what to read. For each format, the function returns a string (or a number) with the
characters read, or nil if it cannot read data with the specified format. When called without
formats, it uses a default format that reads the next line (see below).

The available formats are

“¥n” reads a number; this is the only format that returns a number instead of a string.
“*]” reads the next line (skipping the end of line), or nil on end of file. This is the default format.

“*a” reads the whole file, starting at the current position. On end of file, it returns the empty
string.

“*w” reads the next word (maximal sequence of non-white-space characters), skipping spaces if
necessary, or nil on end of file.

number reads a string with up to that number of characters, or nil on end of file.

e write ([filehandle,] valuel, ...)

Writes the value of each of its arguments to file _OUTPUT, or to filehandle if this argument is
given. The arguments must be strings or numbers. To write other values, use tostring or format
before write. If this function fails, it returns nil, plus a string describing the error.

6.5 System Facilities

e clock ()

Returns an approximation of the amount of CPU time used by the program, in seconds.

41

e date ([format])

Returns a string containing date and time formatted according to the given string format, following
the same rules of the ANSI C function strftime. When called without arguments, it returns a
reasonable date and time representation that depends on the host system and on the current locale.

e execute (command)

This function is equivalent to the C function system. It passes command to be executed by an
operating system shell. It returns a status code, which is system-dependent.

e exit ([code])

Calls the C function exit, with an optional code, to terminate the program. The default value for
code is the success code.

e getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not defined.

e setlocale (locale [, categoryl)

This function is an interface to the ANSI C function setlocale. locale is a string specifying
a locale; category is an optional string describing which category to change: "all", "collate",
"ctype", "monetary", "numeric", or "time"; the default category is "all". The function returns
the name of the new locale, or nil if the request cannot be honored.

7 The Debug Interface

Lua has no built-in debugging facilities. Instead, it offers a special interface, by means of functions
and hooks, which allows the construction of different kinds of debuggers, profilers, and other tools
that need “inside information” from the interpreter. This interface is declared in luadebug.h.

7.1 Stack and Function Information

The main function to get information about the interpreter stack is
int lua_getstack (lua_State *L, int level, lua_Debug *ar);

It fills parts of a 1lua_Debug structure with an identification of the activation record of the function
executing at a given level. Level 0 is the current running function, whereas level n+1 is the function
that has called level n. Usually, lua_getstack returns 1; when called with a level greater than the
stack depth, it returns 0.

The structure lua_Debug is used to carry different pieces of information about an active function:

typedef struct lua_Debug {

const char *event; /* "call", "return" */
int currentline; /* (1) */
const char *name; /* (n) */

const char *namewhat; /* (n) global, tag method, local, field */

42

int nups; /* (u) number of upvalues */

int linedefined; /* (S) */
const char *what; /* (S8) "Lua" function, "C" function, Lua "main" */
const char *source; /* (S) */

char short_src[LUA_IDSIZE]; /* (S) */
/* private part */
} lua_Debug;

lua_getstack fills only the private part of this structure, for future use. To fill in the other fields
of 1lua_Debug with useful information, call

int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);

This function returns 0 on error (e.g., an invalid option in what). Each character in the string what
selects some fields of ar to be filled, as indicated by the letter in parentheses in the definition of
lua_Debug: ‘S’ fills in the fields source, 1inedefined, and what; ‘1’ fills in the field currentline,
etc. Moreover, ‘f’ pushes onto the stack the function that is running at the given level.

To get information about a function that is not active (that is, it is not in the stack), you push
the function onto the stack, and start the what string with the character >. For instance, to know
in which line a function f was defined, you can write

lua_Debug ar;

lua_getglobal(L, "f");
lua_getinfo(L, ">S", &ar);
printf ("%d\n", ar.linedefined);

The fields of 1ua_Debug have the following meaning:

source If the function was defined in a string, source is that string; if the function was defined in
a file, source starts with a @ followed by the file name.

short_src A “printable” version of source, to be used in error messages.
linedefined the line number where the definition of the function starts.

what the string "Lua" if this is a Lua function, "C" if this is a C function, or "main" if this is the
main part of a chunk.

currentline the current line where the given function is executing. When no line information is
available, currentline is set to —1.

name a reasonable name for the given function. Because functions in Lua are first class values,
they do not have a fixed name: Some functions may be the value of many global variables,
while others may be stored only in a table field. The lua_getinfo function checks whether
the given function is a tag method or the value of a global variable. If the given function is
a tag method, then name points to the event name. If the given function is the value of a
global variable, then name points to the variable name. If the given function is neither a tag
method nor a global variable, then name is set to NULL.

43

namewhat Explains the previous field. If the function is a global variable, namewhat is "global";
if the function is a tag method, namewhat is "tag-method"; otherwise namewhat is "" (the
empty string).

nups Number of upvalues of a function.

7.2 Manipulating Local Variables

For the manipulation of local variables, 1uadebug.h uses indices: The first parameter or local
variable has index 1, and so on, until the last active local variable.
The following functions allow the manipulation of the local variables of a given activation record.

const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);
const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);

The parameter ar must be a valid activation record, filled by a previous call to 1ua_getstack or
given as argument to a hook (see §7.3). Function lua_getlocal gets the index of a local variable
(n), pushes its value onto the stack, and returns its name. For lua_setlocal, you push the new
value onto the stack, and the function assigns that value to the variable and returns its name. Both
functions return NULL on failure; that happens if the index is greater than the number of active
local variables.

As an example, the following function lists the names of all local variables for a function at a
given level of the stack:

int listvars (lua_State *L, int level) {

lua_Debug ar;

int i = 1;

const char *name;

if (lua_getstack(L, level, &ar) == 0)
return 0; /* failure: no such level in the stack */

while ((name = lua_getlocal(L, &ar, i++)) != NULL) {
printf ("%s\n", name);
lua_pop(L, 1); /* remove variable value */

}

return 1;

7.3 Hooks

The Lua interpreter offers two hooks for debugging purposes: a call hook and a line hook. Both
have the same type,

typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
and you can set them with the following functions:

lua_Hook lua_setcallhook (lua_State *L, lua_Hook func);
lua_Hook lua_setlinehook (lua_State *L, lua_Hook func);

44

A hook is disabled when its value is NULL, which is the initial value of both hooks. The functions
lua_setcallhook and lua_setlinehook set their corresponding hooks and return their previous
values.

The call hook is called whenever the interpreter enters or leaves a function. The event field
of ar has the strings "call" or "return". This ar can then be used in calls to lua_getinfo,
lua_getlocal, and lua_setlocal to get more information about the function and to manipulate
its local variables.

The line hook is called every time the interpreter changes the line of code it is executing. The
event field of ar has the string "line", and the currentline field has the line number. Again,
you can use this ar in other calls to the debug API.

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook calls Lua to
execute a function or a chunk, this execution ocurrs without any calls to hooks.

7.4 The Reflexive Debug Interface

The library 1dblib provides the functionality of the debug interface to Lua programs. If you want
to use this library, your host application must open it, by calling lua_dblibopen.

You should exert great care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks (e.g., profiling). Please resist the temptation to
use them as a usual programming tool. They are slow and violate some (otherwise) secure aspects
of the language (e.g., privacy of local variables). As a general rule, if your program does not need
this library, do not open it.

e getinfo (function, [what])

This function returns a table with information about a function. You can give the function directly,
or you can give a number as the value of function, which means the function running at level
function of the stack: Level 0 is the current function (getinfo itself); level 1 is the function that
called getinfo; and so on. If function is a number larger than the number of active functions,
then getinfo returns nil.

The returned table contains all the fields returned by lua_getinfo, with the string what de-
scribing what to get. The default for what is to get all information available.

For instance, the expression getinfo(1,"n") .name returns the name of the current function, if
a reasonable name can be found, and getinfo (print) returns a table with all available information
about the print function.

e getlocal (level, local)

This function returns the name and the value of the local variable with index local of the function
at level level of the stack. (The first parameter or local variable has index 1, and so on, until
the last active local variable.) The function returns nil if there is no local variable with the given
index, and raises an error when called with a level out of range. (You can call getinfo to check
whether the level is valid.)

e setlocal (level, local, value)

This function assigns the value value to the local variable with index local of the function at level
level of the stack. The function returns nil if there is no local variable with the given index, and
raises an error when called with a level out of range.

45

e setcallhook (hook)

Sets the function hook as the call hook; this hook will be called every time the interpreter starts and
exits the execution of a function. The only argument to the call hook is the event name ("call"
or "return"). You can call getinfo with level 2 to get more information about the function being
called or returning (level 0 is the getinfo function, and level 1 is the hook function). When called
without arguments, this function turns off call hooks. setcallhook returns the old hook.

e setlinehook (hook)

Sets the function hook as the line hook; this hook will be called every time the interpreter changes
the line of code it is executing. The only argument to the line hook is the line number the
interpreter is about to execute. When called without arguments, this function turns off line hooks.
setlinehook returns the old hook.

8 Lua Stand-alone

Although Lua has been designed as an extension language, to be embedded in a host C program,
it is frequently used as a stand-alone language. An interpreter for Lua as a stand-alone language,
called simply 1lua, is provided with the standard distribution. This program can be called with any
sequence of the following arguments:

-sNUM sets the stack size to NUM (if present, this must be the first option);

- executes stdin as a file;

-c calls lua_close after running all arguments;

-e stat executes string stat;

-f filename executes file filename with the remaining arguments in table arg;
-i enters interactive mode with prompt;

-q enters interactive mode without prompt;

-v prints version information;

var=value sets global var to string "value";

filename executes file filename.

When called without arguments, 1ua behaves as lua -v -i when stdin is a terminal, and as lua -
otherwise.
All arguments are handled in order, except —c. For instance, an invocation like

$ lua -i a=test prog.lua

will first interact with the user until an EOF in stdin, then will set a to "test", and finally will
run the file prog.lua. (Here, $ is the shell prompt. Your prompt may be different.)

When the option -f filename is used, all remaining arguments in the command line are passed
to the Lua program filename in a table called arg. In this table, the field n gets the index of the
last argument, and the field 0 gets "filename". For instance, in the call

46

$ lua a.lua -f b.lua t1 t3
the interpreter first runs the file a.lua, then creates a table
arg = {"t1", "t3"; n =2, [0] = "b.lua"}

and finally runs the file b.1ua. The stand-alone interpreter also provides a getargs function that
can be used to access all command line arguments. For instance, if you call Lua with the line

$ lua -c ab
then a call to getargs in a or b will return the table
{[O] = Illuall’ [1] = "—C", [2] = nan’ [3] = "b", n= 3}

In interactive mode, a multi-line statement can be written finishing intermediate lines with a
backslash (‘\’). If the global variable _PROMPT is defined as a string, then its value is used as the
prompt. Therefore, the prompt can be changed directly on the command line:

$ lua _PROMPT=’myprompt> ’ -i

or in any Lua programs by assigning to _PROMPT.
In Unix systems, Lua scripts can be made into executable programs by using chmod +x and
the #! form, as in #!/usr/local/bin/1ua, or #!/usr/local/bin/lua -f to get other arguments.

Acknowledgments

The authors would like to thank CENPES/PETROBRAS which, jointly with TeCg,,f, used early
versions of this system extensively and gave valuable comments. The authors would also like to
thank Carlos Henrique Levy, who found the name of the game. Lua means “moon” in Portuguese.

Incompatibilities with Previous Versions

Lua 4.0 is a major revision of the language. We took a great care to avoid incompatibilities with
the previous public versions of Lua, but some differences had to be introduced. Here is a list of all
these incompatibilities.
Incompatibilities with version 3.2
Changes in the Language

e All pragmas ($debug, $if, ...) have been removed.

e for, break, and in are now reserved words.

e Garbage-collection tag methods for tables is now obsolete.

e There is now only one tag method for order operators.

e In nested function calls like £ (g(x)), all return values from g are passed as arguments to f.
This only happens when g is the last or the only argument to £.

e The pre-compiler may assume that some operators are associative, for optimizations. This
may cause problems if these operators have non-associative tag methods.

e Old pre-compiled code is obsolete, and must be re-compiled.

47

Changes in the Libraries
e When traversing a table with next or foreach, the table cannot be modified in any way.
e General read patterns are now obsolete.
e The functions rawgettable and rawsettable have been renamed to rawget and rawset.

e The functions foreachvar, nextvar, rawsetglobal, and rawgetglobal are obsolete. You
can get their functionality using table operations over the table of globals, which is returned
by globals.

e setglobal and sort no longer return a value; type no longer returns a second value.

e The p option in function call is now obsolete.

Changes in the API
e The API has been completely rewritten: It is now fully reentrant and much clearer.

e The debug API has been completely rewritten.

48

The Complete Syntax of Lua

chunk — {stat [‘;’]}

block — chunk

stat — warlist] ‘=" explist]
functioncall
do block end
while exp1 do block end
repeat block until expl
if ezp1 then block {elseif exp! then block} [else block] end
return [ezplist1]
break
for name ‘=
for name *,
function funcname ‘C [parlist1])’ block end
local declist [init]

bl

expl *,’ expl [‘,’ expl] do block end

> name in ezxp! do block end

|
|
|
|
|
|
|
|
|
|
|
funcname — name | name ‘.’ name | name ‘:’ name
varlistl — wvar {*,’ var}
var — name | varorfunc ‘[’ expl ‘1’ | varorfunc ‘.’ name
varorfunc — war | functioncall
declist — name {‘,” name}
init — ‘= explist]
explistl — {expl‘,’} exp
expl — exp
exp — mil | number | literal | var | function | upvalue
| functioncall | tableconstructor | ‘C exp ‘)’ | exp binop exp | unop exp
functioncall — wvarorfunc args | varorfunc ‘:’ name args
args — ‘C [explistl])’ | tableconstructor | literal
function — function ‘C [parlistl] ‘)’ block end
parlistl — *..." | name {,” name} [*,” ‘.. .7]
upvalue — ‘%’ name
tableconstructor — ‘{’ fieldlist ‘}’
fieldlist — lfieldlist | ffieldlist | lfieldlist *;’ ffieldlist | ffieldlist *;’ Ifieldlist
lfieldlist — [lfieldlist1]
[feldlist — [ffieldlist1]
lfieldlist1 — exp {*," exp} [,’]
[feldlist1 — ffield {*,’ ffield} [,’]
field — ‘[exp ‘) ‘=" exp | name ‘=" exp
binop _) C+’ | (0 ‘ C*’ | C/’ | (~ | C. .’
‘ L<, | ‘<=’ | L>, | ‘>=’ | L==’ | C”=’
| and | or
unop — ‘=’ | not

49

Index

.59 lua_dofile, 23
_ALERT, 14 lua_dostring, 23
_ERRORMESSAGE, 13 lua_equal, 21
_INPUT, 39 LUA_ERRERR, 23
_OUTPUT, 39 LUA_ERRFILE, 23
_PROMPT, 47 LUA_ERRMEN, 23
_STDERR, 39 lua_error, 26
_STDIN, 39 LUA_ERRRUN, 23
_STDOUT, 39 LUA_ERRSYNTAX, 23
lua_getgccount, 22
abs, 39 lua _getgcthreshold, 22
acceptable index, 20 lua_getglobal, 24
acos, 39 lua getglobals, 24

“add” event, 14
adjustment, 4
alert, 29

and, 8
appendto, 40

lua_getinfo, 43
lua_getlocal, 44
lua_getn, 25
lua_getref, 28
lua_getregistry, 28

arg, 12 lua_getstack, 42
arguments, 12 lua gettable, 24
arithmetic operators, 8 lua_gettagmethod, 26
arr.ays, 2 lua gettop, 19

asin, 39 lua_Hook, 44
assert, 29

lua_insert, 20
lua_iolibopen, 29
lua_iscfunction, 21
lua_isfunction, 21
lua_isnil, 21
lua_isnumber, 21
lua_isstring, 21
lua_istable, 21
lua_isuserdata, 21
lua_lessthan, 21

assignment, 4
associative arrays, 2
atan, 39

atan2, 39

basic expressions, 7
basic types, 2
block, 4

break statement, 5

C API, 19 lua mathlibopen, 29
LUA_ANYTAG, 23 LUA_MINSTACK, 20
lua_baselibopen, 29 LUA MULTRET, 26
lua_call, 25 lua_newtable, 25
lua_CFunction, 27 lua newtag, 23
lua _close, 19 lua_next, 26
lua_concat, 27 LUA_NOREF, 28
lua_copytagmethods, 26 lua open, 19
lua dblibopen, 45 lua_pushcclosure, 28
lua Debug, 42 lua_pushcfunction, 22
lua_dobuffer, 23 lua_pushlstring, 22

50

lua_pushnil, 22
lua_pushnumber, 22
lua_pushstring, 22
lua_pushuserdata, 22
lua_pushusertag, 22
lua_pushvalue, 20
lua_rawcall, 25
lua_rawget, 25
lua_rawgeti, 25
lua_rawset, 25
lua_rawseti, 25
lua_ref, 28
LUA REFNIL, 28
LUA REFREGISTRY, 28
lua_register, 27
lua_remove, 20
lua_setcallhook, 44
lua_setgcthreshold, 22
lua_setglobal, 24
lua_setglobals, 24
lua_setlinehook, 44
lua_setlocal, 44
lua _settable, 25
lua_settag, 23
lua_settagmethod, 26
lua_settop, 20
lua_stackspace, 20
lua State, 19
lua_strlen, 21
lua_strlibopen, 29
lua_tag, 21
lua_tocfunction, 21
lua_tonumber, 21
lua_tostring, 21
lua_touserdata, 21
lua_type, 21
lua_typename, 21
lua_unref, 28

C closure, 28

C pointers, 2

call, 29

captures, 38

ceil, 39

character class, 37

chunk, 1

clock, 41

closefile, 40

51

closing a file, 40

coercion, 4
collectgarbage, 30
comments, 3
concatenation, 9
“concatenation” event, 16
condition expression, 5
constructors, 9
copytagmethods, 30

cos, 39

date, 42

def, 39

“div” event, 15
dofile, 30
dostring, 30

eight-bit clean, 2
error, 30
event, 14
execute, 42
exit, 42

exp, 39
exponentiation, 8
expressions, 7

file handles, 39
floor, 39
flush, 40

for statement, 5
foreach, 30
foreachi, 31
format, 36
frexp, 39

function, 2

function call, 10
function definitions, 11
“function” event, 18

“gc” event, 18
getargs, 47
getenv, 42
getglobal, 31
“getglobal” event, 16

getinfo, 45
getlocal, 45
getn, 31

“gettable” event, 17

gettagmethod, 14, 31 methods, 12

global environment, 1 min, 39
global variables, 1 mod, 39
globals, 32 “mul” event, 15
grammar, 49 multiple assignment, 4
args, 11, 49
binop, 49 newtag, 32
block, 4, 49 next, J2
chunk, 1, 49 nil, 2
declist, 7, 49 not, 8
exp, 7, 49 number, 2
expl, 8, 49 numerical constants, 3
;‘523210’ 141:9’ 49 openfile, 39
fﬁeldiist,’g, 49 operator precedence, 9
flieldlist1, 10, 49 o 8
fieldlist, 9, 49 pattern, 38
funcname, 11, 12, 49 pattern item, 38
function, 11, 49 PI, 39
functioncall, 10, 49 piped input, 40
init, 7, 49 popen, 40
lfieldlist, 9, 49 “pow” event, 15
Ifieldlist1, 9, 49 pre-compilation, 2
parlistl, 12, 49 print, 32
stat, 4-7, 11, 49 protected calls, 30
tableconstructor, 9, 49
unop, 49 rad, 39
upvalue, 13, 49 random, 39
var, 5, 49 randomseed, 39
varlist1, 4, 49 rawget, 32
varorfunc, 5, 49 rawset, 32
gsub, 36 read, 41
readfrom, 40
identifiers, 3 records, 2
if-then-else statement, 5 reference, 28
“index” event, 16 relational operators, 8
remove, 40
1ldexp, 39 rename, 40

literal strings, 3

) repeat-until statement, 5
local variables, 7

reserved words, 3

log, 39 return statement, 5

logl0, 39

logical operators, 8 seek, 41

“It” event, 16 self, 12

lua stand-alone, 46 setcallhook, 46

luac, 2, 23 setglobal, 32
“setglobal” event, 17

max, 39 setlinehook, 46

52

setlocal, 45 tonumber, 33

setlocale, 42 tostring, 33
“settable” event, 18 tremove, 34
settag, 32 type, 34
settagmethod, 14, 33 types and tags, 2
short-cut evaluation, 8
sin, 39 “unm” event, 15
sort, 33 upvalues, 13
sqrt, 39 userdata, 2
stack index, 19 valid index, 19
state, 19 .
vararg function, 12
statements, 4)
version 3.2, 47
stderr, 29 e ens
visibility, 13
strbyte, 34
strchar, 35 while-do statement, 5
strfind, 35 write, 41
string, 2 writeto, 40
strlen, 35
strlower, 35
strrep, 35
strsub, 35

strupper, 35
“sub” event, 15

table, 2

tag, 2

tag, 33

tag method, 14
add, 14
concatenation, 16
div, 15
function, 18
gc, 18
getglobal, 16
gettable, 17
index, 16
It, 16
mul, 15
pow, 15
setglobal, 17
settable, 18
sub, 15
unm, 15

tan, 39

tinsert, 33

tmpname, 41

tokens, 3

53

