Lua 5.0 Reference Manual

Last revised on November 25, 2003

Copyright © 2003 Tecgraf, PUC-Rio. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Copies of this manual can be obtained at Lua’s official web site, www.lua.org.

The Lua logo was designed by A. Nakonechny. Copyright (© 1998. All rights reserved.

Lua 5.0 Reference Manual

Roberto lerusalimschy Luiz Henrique de Figueiredo Waldemar Celes

lua@tecgraf.puc-rio.br
Tecgraf — Computer Science Department — PUC-Rio

PUC-Riolnf. MCC14/03 Abril 2003

Abstract

Lua is a powerful, light-weight programming language designed for extending applications. Lua
is also frequently used as a general-purpose, stand-alone language. Lua combines simple proce-
dural syntax (similar to Pascal) with powerful data description constructs based on associative
arrays and extensible semantics. Lua is dynamically typed, interpreted from opcodes, and
has automatic memory management with garbage collection, making it ideal for configuration,
scripting, and rapid prototyping.

This document describes version 5.0 of the Lua programming language and the Application
Program Interface (API) that allows interaction between Lua programs and their host C pro-
grams.

Resumo

Lua é uma linguagem de programacao poderosa e leve, projetada para estender aplicacoes.
Lua também é frequentemente usada como uma linguagem de propésito geral. Lua combina
programacao procedural (com sintaxe semelhante & de Pascal) com poderosas construgoes para
descricao de dados, baseadas em tabelas associativas e semantica extensivel. Lua é tipada
dinamicamente, interpretada a partir de opcodes, e tem gerenciamento automatico de memoria
com coleta de lixo. Essas caracteristicas fazem de Lua uma linguagem ideal para configuragao,
automacao (scripting) e prototipagem répida.

Este documento descreve a versao 5.0 da linguagem de programacao Lua e a Interface de
Programacéao (API) que permite a interagdo entre programas Lua e programas C hospedeiros.

ii

Contents

1 Introduction

2 The
2.1
2.2

2.3
24

2.5

2.6
2.7
2.8
2.9

2.10

3 The
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Language

Lexical Conventions
Values and Types o . o
2.2.1 Coercion e
Variables e
Statements e e e
2.4.1 Chunks e
2.4.2 Blocks e
2.4.3 Assignment e
2.4.4 Control Structures
2.4.5 For Statement
2.4.6 Function Calls as Statements
2.4.7 Local Declarations
Expressions e
2.5.1 Arithmetic Operators
2.5.2 Relational Operators
2.5.3 Logical Operators
2.5.4 Concatenation e
2.5.5 Precedence
2.5.6 Table Constructors e
2.5.7 Function Calls
2.5.8 Function Definitions
Visibility Rules oo o
Error Handling o . e
Metatables e
Garbage Collection L
2.9.1 Garbage-Collection Metamethods
2.9.2 Weak Tables
Coroutines e e

Application Program Interface

States e
The Stack and Indices e
Stack Manipulation
Querying the Stack L
Getting Values from the Stack oo o
Pushing Values onto the Stack
Controlling Garbage Collection
Userdata L e
Metatables L
Loading Lua Chunks
Manipulating Tables e
Manipulating Environments 0oL L o
Using Tables as Arrays o o i

iii

3.14 Calling Functions L e e
3.15 Protected Calls e
3.16 Defining C Functions
3.17 Defining C Closures o o ot
3.18 Registry o o e e
3.19 Error Handling in C e
3.20 Threads e

4 The Debug Interface

4.1 Stack and Function Information L

4.3 HoOKS e

4.2 Manipulating Local Variables and Upvalues
5 Standard Libraries

5.1 Basic Functions e
5.2 Coroutine Manipulation
5.3 String Manipulation L L e
5.4 Table Manipulation
5.5 Mathematical Functions
5.6 Input and Output Facilities
5.7 Operating System Facilities o
5.8 The Reflexive Debug Interface o o o

6 Lua Stand-alone
Incompatibilities with Previous Versions
The Complete Syntax of Lua

Index

v

35
35
36
37

38
39
43
44
49
50
o1
53
95

57

58

60

61

1 Introduction

Lua is an extension programming language designed to support general procedural programming
with data description facilities. It also offers good support for object-oriented programming, func-
tional programming, and data-driven programming. Lua is intended to be used as a powerful,
light-weight configuration language for any program that needs one. Lua is implemented as a
library, written in clean C (that is, in the common subset of ANSI C and C++).

Being an extension language, Lua has no notion of a “main” program: it only works embedded
in a host client, called the embedding program or simply the host. This host program can invoke
functions to execute a piece of Lua code, can write and read Lua variables, and can register
C functions to be called by Lua code. Through the use of C functions, Lua can be augmented
to cope with a wide range of different domains, thus creating customized programming languages
sharing a syntactical framework.

The Lua distribution includes a stand-alone embedding program, lua, that uses the Lua library
to offer a complete Lua interpreter.

Lua is free software, and is provided as usual with no guarantees, as stated in its copyright notice.
The implementation described in this manual is available at Lua’s official web site, www.lua.org.

Like any other reference manual, this document is dry in places. For a discussion of the decisions
behind the design of Lua, see the papers below, which are available at Lua’s web site.

e R. lerusalimschy, L. H. de Figueiredo, and W. Celes. Lua—an extensible extension language.
Software: Practice € Experience 26 #6 (1996) 635-652.

e L. H. de Figueiredo, R. Ierusalimschy, and W. Celes. The design and implementation of a
language for extending applications. Proceedings of XXI Brazilian Seminar on Software and
Hardware (1994) 273-283.

e L. H. de Figueiredo, R. Ierusalimschy, and W. Celes. Lua: an extensible embedded language.
Dr. Dobb’s Journal 21 #12 (Dec 1996) 26-33.

e R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The evolution of an extension language:
a history of Lua, Proceedings of V Brazilian Symposium on Programming Languages (2001)
B-14-B-28.

Lua means “moon” in Portuguese and is pronounced LOO-ah.

2 The Language

This section describes the lexis, the syntax, and the semantics of Lua. In other words, this section
describes which tokens are valid, how they can be combined, and what their combinations mean.

The language constructs will be explained using the usual extended BNF, in which { a } means 0
or more a’s, and [a | means an optional a. Non-terminals are shown in italics, keywords are shown
in bold, and other terminal symbols are shown in typewriter font, enclosed in single quotes.

2.1 Lexical Conventions

Identifiers in Lua can be any string of letters, digits, and underscores, not beginning with a digit.
This coincides with the definition of identifiers in most languages. (The definition of letter depends
on the current locale: any character considered alphabetic by the current locale can be used in an
identifier.)

The following keywords are reserved and cannot be used as identifiers:

and break do else elseif

end false for function if
in local nil not or
repeat return then true until while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different, valid
identifiers. As a convention, identifiers starting with an underscore followed by uppercase letters
(such as _VERSION) are reserved for internal variables used by Lua.

The following strings denote other tokens:

- * / -~ =
= <= >= < >

() { + L]

I . b

Literal strings can be delimited by matching single or double quotes, and can contain the
following C-like escape sequences:

\a — bell

\b — backspace

\f — form feed

\n — newline

\r — carriage return

\t — horizontal tab

\v — vertical tab

\\ — backslash

\" — quotation mark

\’ — apostrophe

\[— left square bracket
\] — right square bracket

Moreover, a ‘\newline’ (that is, a backslash followed by a real newline) results in a newline in
the string. A character in a string may also be specified by its numerical value using the escape
sequence ‘\ddd’, where ddd is a sequence of up to three decimal digits. Strings in Lua may contain
any 8-bit value, including embedded zeros, which can be specified as ‘\0’.

Literal strings can also be delimited by matching double square brackets [[...]]. Literals
in this bracketed form may run for several lines, may contain nested [[...]] pairs, and do not
interpret any escape sequences. For convenience, when the opening ‘[[’ is immediately followed
by a newline, the newline is not included in the string. As an example, in a system using ASCII
(in which ‘a’ is coded as 97, newline is coded as 10, and ‘1’ is coded as 49), the four literals below
denote the same string:

¢D) "alo\n123\""
(2) ’\9710\10\04923""

(3) [[alo
123"]]
(4) [C
alo
123"]]

Numerical constants may be written with an optional decimal part and an optional decimal
exponent. Examples of valid numerical constants are

3 3.0 3.1416 314.16e-2 0.31416E1

Comments start anywhere outside a string with a double hyphen (--). If the text immediately
after —- is different from [[, the comment is a short comment, which runs until the end of the line.
Otherwise, it is a long comment, which runs until the corresponding 1]. Long comments may run
for several lines and may contain nested [[...]] pairs.

For convenience, the first line of a chunk is skipped if it starts with #. This facility allows the
use of Lua as a script interpreter in Unix systems (see §6).

2.2 Values and Types

Lua is a dynamically typed language. That means that variables do not have types; only values do.
There are no type definitions in the language. All values carry their own type.

There are eight basic types in Lua: nil, boolean, number, string, function, userdata, thread,
and table. Nil is the type of the value nil, whose main property is to be different from any other
value; usually it represents the absence of a useful value. Boolean is the type of the values false and
true. In Lua, both nil and false make a condition false; any other value makes it true. Number
represents real (double-precision floating-point) numbers. (It is easy to build Lua interpreters
that use other internal representations for numbers, such as single-precision float or long integers.)
String represents arrays of characters. Lua is 8-bit clean: Strings may contain any 8-bit character,
including embedded zeros (?\0’) (see §2.1).

Functions are first-class values in Lua. That means that functions can be stored in variables,
passed as arguments to other functions, and returned as results. Lua can call (and manipulate)
functions written in Lua and functions written in C (see §2.5.7).

The type userdata is provided to allow arbitrary C data to be stored in Lua variables. This type
corresponds to a block of raw memory and has no pre-defined operations in Lua, except assignment
and identity test. However, by using metatables, the programmer can define operations for userdata
values (see §2.8). Userdata values cannot be created or modified in Lua, only through the C API.
This guarantees the integrity of data owned by the host program.

The type thread represents independent threads of execution and it is used to implement corou-
tines.

The type table implements associative arrays, that is, arrays that can be indexed not only with
numbers, but with any value (except nil). Moreover, tables can be heterogeneous, that is, they can
contain values of all types (except nil). Tables are the sole data structuring mechanism in Lua;
they may be used to represent ordinary arrays, symbol tables, sets, records, graphs, trees, etc. To
represent records, Lua uses the field name as an index. The language supports this representation
by providing a.name as syntactic sugar for a["name"]. There are several convenient ways to create
tables in Lua (see §2.5.6).

Like indices, the value of a table field can be of any type (except nil). In particular, because
functions are first class values, table fields may contain functions. Thus tables may also carry
methods (see §2.5.8).

Tables, functions, and userdata values are objects: variables do not actually contain these values,
only references to them. Assignment, parameter passing, and function returns always manipulate
references to such values; these operations do not imply any kind of copy.

The library function type returns a string describing the type of a given value (see §5.1).

2.2.1 Coercion

Lua provides automatic conversion between string and number values at run time. Any arithmetic
operation applied to a string tries to convert that string to a number, following the usual rules.
Conversely, whenever a number is used where a string is expected, the number is converted to a
string, in a reasonable format. For complete control of how numbers are converted to strings, use
the format function from the string library (see §5.3).

2.3 Variables

Variables are places that store values. There are three kinds of variables in Lua: global variables,
local variables, and table fields.

A single name can denote a global variable or a local variable (or a formal parameter of a
function, which is a particular form of local variable):

var — Name

Variables are assumed to be global unless explicitly declared local (see §2.4.7). Local variables
are lezically scoped: Local variables can be freely accessed by functions defined inside their scope
(see §2.6).

Before the first assignment to a variable, its value is nil.

Square brackets are used to index a table:

var — prefizezp ‘[exp ‘1’
The first expression (prefizezp)should result in a table value; the second expression (ezp) identifies
a specific entry inside that table. The expression denoting the table to be indexed has a restricted

syntax; see §2.5 for details.

The syntax var.NAME is just syntactic sugar for var ["NAME"]:

var — prefizerp .’ Name

The meaning of accesses to global variables and table fields can be changed via metatables. An
access to an indexed variable t[i] is equivalent to a call gettable_event(t,i). (See §2.8 for a
complete description of the gettable_event function. This function is not defined or callable in
Lua. We use it here only for explanatory purposes.)

All global variables live as fields in ordinary Lua tables, called environment tables or simply
environments. Functions written in C and exported to Lua (C functions) all share a common
global environment. Each function written in Lua (a Lua function) has its own reference to an
environment, so that all global variables in that function will refer to that environment table.
When a function is created, it inherits the environment from the function that created it. To
change or get the environment table of a Lua function, you call setfenv or getfenv (see §5.1).

An access to a global variable x is equivalent to _env.x, which in turn is equivalent to

gettable_event(_env, "x")

where _env is the environment of the running function. (The _env variable is not defined in Lua.
We use it here only for explanatory purposes.)

2.4 Statements

Lua supports an almost conventional set of statements, similar to those in Pascal or C. This set
includes assignment, control structures, procedure calls, table constructors, and variable declara-
tions.

2.4.1 Chunks

The unit of execution of Lua is called a chunk. A chunk is simply a sequence of statements, which
are executed sequentially. Each statement can be optionally followed by a semicolon:

chunk — {stat[‘;’]}

Lua handles a chunk as the body of an anonymous function (see §2.5.8). As such, chunks can
define local variables and return values.

A chunk may be stored in a file or in a string inside the host program. When a chunk is
executed, first it is pre-compiled into opcodes for a virtual machine, and then the compiled code is
executed by an interpreter for the virtual machine.

Chunks may also be pre-compiled into binary form; see program luac for details. Programs in
source and compiled forms are interchangeable; Lua automatically detects the file type and acts
accordingly.

2.4.2 Blocks

A block is a list of statements; syntactically, a block is equal to a chunk:
block — chunk
A block may be explicitly delimited to produce a single statement:
stat — do block end

Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also
sometimes used to add a return or break statement in the middle of another block (see §2.4.4).

2.4.3 Assignment

Lua allows multiple assignment. Therefore, the syntax for assignment defines a list of variables on
the left side and a list of expressions on the right side. The elements in both lists are separated by
commas:
stat — warlist] ‘=" explist]
varlistl — wvar {‘,” var}
explistt — exp {*,” exp}
Expressions are discussed in §2.5.

Before the assignment, the list of values is adjusted to the length of the list of variables. If
there are more values than needed, the excess values are thrown away. If there are fewer values
than needed, the list is extended with as many nil’s as needed. If the list of expressions ends with
a function call, then all values returned by that function call enter in the list of values, before the
adjustment (except when the call is enclosed in parentheses; see §2.5).

The assignment statement first evaluates all its expressions and only then are the assignments
performed. Thus the code

i
i, ali] = i+1, 20

sets a[3] to 20, without affecting a[4] because the i in a[i] is evaluated (to 3) before it is
assigned 4. Similarly, the line

X, Y=YV, X

exchanges the values of x and y.

The meaning of assignments to global variables and table fields can be changed via metatables.
An assignment to an indexed variable t[i] = val is equivalent to settable_event(t,i,val).
(See §2.8 for a complete description of the settable_event function. This function is not defined
or callable in Lua. We use it here only for explanatory purposes.)

An assignment to a global variable x = val is equivalent to the assignment _env.x = val,
which in turn is equivalent to

settable_event(_env, "x", wval)

where _env is the environment of the running function. (The _env variable is not defined in Lua.
We use it here only for explanatory purposes.)

2.4.4 Control Structures

The control structures if, while, and repeat have the usual meaning and familiar syntax:

stat — while exp do block end
stat — repeat block until exp
stat — if exp then block { elseif exp then block} [else block | end

Lua also has a for statement, in two flavors (see §2.4.5).

The condition expression exp of a control structure may return any value. Both false and nil
are considered false. All values different from nil and false are considered true (in particular, the
number 0 and the empty string are also true).

The return statement is used to return values from a function or from a chunk. Functions and
chunks may return more than one value, so the syntax for the return statement is

stat — return [explist] |

The break statement can be used to terminate the execution of a while, repeat, or for loop,
skipping to the next statement after the loop:

stat — break

A break ends the innermost enclosing loop.

For syntactic reasons, return and break statements can only be written as the last statement of
a block. If it is really necessary to return or break in the middle of a block, then an explicit inner
block can be used, as in the idioms ‘do return end’ and ‘do break end’, because now return
and break are the last statements in their (inner) blocks. In practice, those idioms are only used
during debugging.

2.4.5 For Statement

The for statement has two forms: one numeric and one generic.
The numeric for loop repeats a block of code while a control variable runs through an arithmetic
progression. It has the following syntax:

() [T (S

stat — for Name ‘=" exp ‘,” exp [¢,” exp | do block end

The block is repeated for name starting at the value of the first exp, until it passes the second exp
by steps of the third exp. More precisely, a for statement like

for var = el, e2, e3 do block end

is equivalent to the code:

do
local var, _limit, _step = tonumber(el), tonumber(e2), tonumber(e3)
if not (var and _limit and _step) then error() end
while (_step>0 and var<=_limit) or (_step<=0 and var>=_limit) do
block
var = var + _step
end
end

Note the following:
e All three control expressions are evaluated only once, before the loop starts. They must all
result in numbers.
e _limit and _step are invisible variables. The names are here for explanatory purposes only.
e The behavior is undefined if you assign to var inside the block.
e If the third expression (the step) is absent, then a step of 1 is used.
e You can use break to exit a for loop.

e The loop variable var is local to the statement; you cannot use its value after the for ends or
is broken. If you need the value of the loop variable var, then assign it to another variable
before breaking or exiting the loop.

The generic for statement works over functions, called iterators. For each iteration, it calls its
iterator function to produce a new value, stopping when the new value is nil. The generic for loop
has the following syntax:

stat — for Name {‘,’ Name } in ezplist! do block end

A for statement like
for var_1, ..., var_n in explist do block end

is equivalent to the code:

do
local _f, _s, var_1 = explist
local var_2, ... , var_n
while true do
var_1, , var_.n = _f(_s, var_1)
if var_1 == nil then break end
block
end
end

Note the following:

e explist is evaluated only once. Its results are an iterator function, a state, and an initial
value for the first iterator variable.

e _f and _s are invisible variables. The names are here for explanatory purposes only.

e The behavior is undefined if you assign to var_1 inside the block.
e You can use break to exit a for loop.

e The loop variables var_i are local to the statement; you cannot use their values after the for
ends. If you need these values, then assign them to other variables before breaking or exiting
the loop.

2.4.6 Function Calls as Statements

To allow possible side-effects, function calls can be executed as statements:
stat — functioncall

In this case, all returned values are thrown away. Function calls are explained in §2.5.7.

2.4.7 Local Declarations

Local variables may be declared anywhere inside a block. The declaration may include an initial
assignment:
4=7

stat — local namelist |
namelist — Name {‘,’ Name }

explist1 |

If present, an initial assignment has the same semantics of a multiple assignment (see §2.4.3).
Otherwise, all variables are initialized with nil.

A chunk is also a block (see §2.4.1), so local variables can be declared in a chunk outside any
explicit block. Such local variables die when the chunk ends.

The visibility rules for local variables are explained in §2.6.

2.5 Expressions

The basic expressions in Lua are the following:

exp — prefizexp

exp — nil | false | true
erp — Number

erp — Literal

exp — function

erp — tableconstructor

prefizexp — war | functioncall | ‘C exp ‘)’

Numbers and literal strings are explained in §2.1; variables are explained in §2.3; function
definitions are explained in §2.5.8; function calls are explained in §2.5.7; table constructors are
explained in §2.5.6.

An expression enclosed in parentheses always results in only one value. Thus, (f(x,y,z)) is
always a single value, even if f returns several values. (The value of (f(x,y,z)) is the first value
returned by f or nil if £ does not return any values.)

Expressions can also be built with arithmetic operators, relational operators, and logical oper-
ators, all of which are explained below.

2.5.1 Arithmetic Operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), * (multipli-
cation), / (division), and ~ (exponentiation); and unary - (negation). If the operands are numbers,

or strings that can be converted to numbers (see §2.2.1), then all operations except exponentiation
have the usual meaning. Exponentiation calls a global function __pow; otherwise, an appropriate
metamethod is called (see §2.8). The standard mathematical library defines function __pow, giving
the expected meaning to exponentiation (see §5.5).

2.5.2 Relational Operators

The relational operators in Lua are

~= < > <= >=

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result
is false. Otherwise, the values of the operands are compared. Numbers and strings are compared
in the usual way. Objects (tables, userdata, threads, and functions) are compared by reference:
Two objects are considered equal only if they are the same object. Every time you create a new
object (a table, userdata, or function), this new object is different from any previously existing
object.

You can change the way that Lua compares tables and userdata using the “eq” metamethod
(see §2.8).

The conversion rules of §2.2.1 do not apply to equality comparisons. Thus, "0"==0 evaluates
to false, and t[0] and t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared
as such. Otherwise, if both arguments are strings, then their values are compared according to the
current locale. Otherwise, Lua tries to call the “It” or the “le” metamethod (see §2.8).

2.5.3 Logical Operators

The logical operators in Lua are
and or not

Like the control structures (see §2.4.4), all logical operators consider both false and nil as false
and anything else as true.

The operator not always return false or true.

The conjunction operator and returns its first argument if this value is false or nil; otherwise,
and returns its second argument. The disjunction operator or returns its first argument if this
value is different from nil and false; otherwise, or returns its second argument. Both and and or
use short-cut evaluation, that is, the second operand is evaluated only if necessary. For example,

10 or error() -> 10
nil or "a" => M"a"
nil and 10 -> nil
false and error() -> false
false and nil -> false
false or nil -> nil
10 and 20 -> 20

2.5.4 Concatenation

The string concatenation operator in Lua is denoted by two dots (‘..”). If both operands are
strings or numbers, then they are converted to strings according to the rules mentioned in §2.2.1.
Otherwise, the “concat” metamethod is called (see §2.8).

2.5.5 Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:

or
and

not (unary)

~

You can use parentheses to change the precedences in an expression. The concatenation (‘..”) and

(~

exponentiation (‘~’) operators are right associative. All other binary operators are left associative.

2.5.6 Table Constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a new
table is created. Constructors can be used to create empty tables, or to create a table and initialize
some of its fields. The general syntax for constructors is

tableconstructor — {’ [fieldlist] ‘}’

fieldlist — field { fieldsep field} | fieldsep |
field — ‘[exp ‘1’ ‘=" exp | Name ‘=" exp | exp
fieldsep — <7 | ‘5’

Each field of the form [expl] = exp2 adds to the new table an entry with key expl and value
exp2. A field of the form name = exp is equivalent to ["name"] = exp. Finally, fields of the
form exp are equivalent to [i] = exp, where i are consecutive numerical integers, starting with 1.
Fields in the other formats do not affect this counting. For example,

a=A{[fW] =g; "x", "y"; x =1, £(x), [30] = 23; 45}

is equivalent to

do
local temp = {}
temp[f(1)] = g
temp[1] = "x" -- 1st exp
temp[2] = "y" -- 2nd exp
temp.x = 1 -- temp["x"] =1
temp[3] = f(x) -- 3rd exp
temp[30] = 23
temp[4] = 45 -- 4th exp
a = temp

end

10

If the last field in the list has the form exp and the expression is a function call, then all values
returned by the call enter the list consecutively (see §2.5.7). To avoid this, enclose the function call
in parentheses (see §2.5).

The field list may have an optional trailing separator, as a convenience for machine-generated
code.

2.5.7 Function Calls

A function call in Lua has the following syntax:
functioncall — prefizexp args

In a function call, first prefixexp and args are evaluated. If the value of prefizexp has type function,

then that function is called with the given arguments. Otherwise, its “call” metamethod is called,

having as first parameter the value of prefizezp, followed by the original call arguments (see §2.8).
The form

functioncall — prefizexp ‘.’ Name args

can be used to call “methods”. A call v:name(...) is syntactic sugar for v.name(v,...), except
that v is evaluated only once.
Arguments have the following syntax:
args — ‘O [explistl])’
args — tableconstructor
args — Literal

All argument expressions are evaluated before the call. A call of the form f{. ..} is syntactic sugar
for £({...}), that is, the argument list is a single new table. A call of the form £>...’> (or £"..."
or £[[...1]) is syntactic sugar for £(’...?), that is, the argument list is a single literal string.

Because a function can return any number of results (see §2.4.4), the number of results must
be adjusted before they are used. If the function is called as a statement (see §2.4.6), then its
return list is adjusted to zero elements, thus discarding all returned values. If the function is called
inside another expression or in the middle of a list of expressions, then its return list is adjusted
to one element, thus discarding all returned values except the first one. If the function is called as
the last element of a list of expressions, then no adjustment is made (unless the call is enclosed in
parentheses).

Here are some examples:

£O -- adjusted to O results

g(£0), x) -- £f() is adjusted to 1 result

glx, £0O) -- g gets x plus all values returned by f()

a,b,c = £, x -- £f() is adjusted to 1 result (and c gets nil)
a,b,c = x, £ -- £() is adjusted to 2 results

a,b,c = £() -- £() is adjusted to 3 results

return f() -- returns all values returned by f£()

return x,y,f() -- returns x, y, and all values returned by f()
{£O} -- creates a list with all values returned by f()
{£O, nil} --— £() is adjusted to 1 result

If you enclose a function call in parentheses, then it is adjusted to return exactly one value:

return x,y,(f(0)) -- returns x, y, and the first value from f()
{EO)?} -- creates a table with exactly one element

11

As an exception to the free-format syntax of Lua, you cannot put a line break before the ‘(' in
a function call. That restriction avoids some ambiguities in the language. If you write

a=f*f

(g) .x(a)

Lua would read that asa = £(g) .x(a). So, if you want two statements, you must add a semi-colon
between them. If you actually want to call £, you must remove the line break before (g).

A call of the form return functioncall is called a tail call. Lua implements proper tail calls
(or proper tail recursion): In a tail call, the called function reuses the stack entry of the calling
function. Therefore, there is no limit on the number of nested tail calls that a program can execute.
However, a tail call erases any debug information about the calling function. Note that a tail call
only happens with a particular syntax, where the return has one single function call as argument;
this syntax makes the calling function returns exactly the returns of the called function. So, all the
following examples are not tails calls:

return (£f(x)) -- results adjusted to 1
return 2 * £(x)

return x, f(x) -— additional results
f(x); return -— results discarded
return x or f(x) -- results adjusted to 1

2.5.8 Function Definitions

The syntax for function definition is

function — function funcbody
funcbody — “C [parlistl])’ block end

The following syntactic sugar simplifies function definitions:

stat — function funcname funcbody
stat — local function Name funcbody
funcname — Name {‘.’ Name } [‘:’ Name |

The statement

function £ () ... end
translates to

f = function () ... end
The statement

function t.a.b.c.f () ... end
translates to

t.a.b.c.f = function () ... end
The statement

local function £ () ... end

translates to

12

local f; f = function () ... end

A function definition is an executable expression, whose value has type function. When Lua
pre-compiles a chunk, all its function bodies are pre-compiled too. Then, whenever Lua executes
the function definition, the function is instantiated (or closed). This function instance (or closure)
is the final value of the expression. Different instances of the same function may refer to different
external local variables and may have different environment tables.

Parameters act as local variables that are initialized with the argument values:

parlistl — namelist [*,” ...]

¢ 9

parlistl] —

When a function is called, the list of arguments is adjusted to the length of the list of parameters,

unless the function is a variadic or vararg function, which is indicated by three dots (‘...") at the

end of its parameter list. A vararg function does not adjust its argument list; instead, it collects all

extra arguments into an implicit parameter, called arg. The value of arg is a table, with a field n

that holds the number of extra arguments and with the extra arguments at positions 1, 2, ..., n.
As an example, consider the following definitions:

function f(a, b) end
function g(a, b, ...) end

function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters:

CALL PARAMETERS

£(3) a=3, b=nil

£(3, 4) =3, b=4

£f(3, 4, 5) a=3, b=4

f(x(O, 10) a=1, b=10

£f(rQ) a=1, b=2

g(3) a=3, b=nil, arg={n=0}

g(3, 4) a=3, b=4, arg={n=0}

g(3, 4, 5, 8) a=3, b=4, arg={5, 8; n=2}
g, r()) a=5, b=1, arg={2, 3; n=2}

Results are returned using the return statement (see §2.4.4). If control reaches the end of a
function without encountering a return statement, then the function returns with no results.

The colon syntax is used for defining methods, that is, functions that have an implicit extra
parameter self. Thus, the statement
function t.a.b.c:f (...) ... end

is syntactic sugar for

t.a.b.c.f = function (self, ...) ... end

13

2.6 Visibility Rules

Lua is a lexically scoped language. The scope of variables begins at the first statement after
their declaration and lasts until the end of the innermost block that includes the declaration. For
instance:

x = 10 -- global variable
do -— new block
local x = x -- new ‘x’, with value 10
print(x) --> 10
x = x+1
do -— another block
local x = x+1 -- another ‘x’
print(x) -=> 12
end
print(x) -—> 11
end
print(x) --> 10 (the global one)

Notice that, in a declaration like local x = x, the new x being declared is not in scope yet, and
so the second x refers to the outside variable.

Because of the lexical scoping rules, local variables can be freely accessed by functions defined
inside their scope. For instance:

local counter = 0

function inc (x)
counter = counter + X
return counter

end

A local variable used by an inner function is called an upvalue, or external local variable, inside the
inner function.

Notice that each execution of a local statement defines new local variables. Consider the
following example:

a={}
local x = 20
for i=1,10 do

local y = 0
a[il = function () y=y+1; return x+y end
end

The loop creates ten closures (that is, ten instances of the anonymous function). Each of these
closures uses a different y variable, while all of them share the same x.

2.7 Error Handling

Because Lua is an extension language, all Lua actions start from C code in the host program calling
a function from the Lua library (see §3.15). Whenever an error occurs during Lua compilation
or execution, control returns to C, which can take appropriate measures (such as print an error
message).

14

Lua code can explicitly generate an error by calling the error function (see §5.1). If you need
to catch errors in Lua, you can use the pcall function (see §5.1).

2.8 Metatables

Every table and userdata object in Lua may have a metatable. This metatable is an ordinary Lua
table that defines the behavior of the original table and userdata under certain special operations.
You can change several aspects of the behavior of an object by setting specific fields in its metatable.
For instance, when an object is the operand of an addition, Lua checks for a function in the field
"__add" in its metatable. If it finds one, Lua calls that function to perform the addition.

We call the keys in a metatable events and the values metamethods. In the previous example,
the event is "add" and the metamethod is the function that performs the addition.

You can query and change the metatable of an object through the set/getmetatable functions
(see §5.1).

A metatable may control how an object behaves in arithmetic operations, order comparisons,
concatenation, and indexing. A metatable can also define a function to be called when a userdata
is garbage collected. For each of those operations Lua associates a specific key called an event.
When Lua performs one of those operations over a table or a userdata, it checks whether that
object has a metatable with the corresponding event. If so, the value associated with that key (the
metamethod) controls how Lua will perform the operation.

Metatables control the operations listed next. Each operation is identified by its corresponding
name. The key for each operation is a string with its name prefixed by two underscores; for
instance, the key for operation “add” is the string "__add". The semantics of these operations is
better explained by a Lua function describing how the interpreter executes that operation.

The code shown here in Lua is only illustrative; the real behavior is hard coded in the interpreter
and it is much more efficient than this simulation. All functions used in these descriptions (rawget,
tonumber, etc.) are described in §5.1. In particular, to retrieve the metamethod of a given object,
we use the expression

metatable (obj) [event]
This should be read as
rawget (metatable(obj) or {}, event)

That is, the access to a metamethod does not invoke other metamethods, and the access to objects
with no metatables does not fail (it simply results in nil).

“add”: the + operation.

The function getbinhandler below defines how Lua chooses a handler for a binary op-
eration. First, Lua tries the first operand. If its type does not define a handler for the
operation, then Lua tries the second operand.

function getbinhandler (opl, op2, event)
return metatable(opl) [event] or metatable(op2) [event]
end

Using that function, the behavior of the opl + op2 is

15

function add_event (opl, op2)
local ol, 02 = tonumber(opl), tonumber (op2)
if ol and 02 then -- both operands are numeric?
return ol + 02 -- ‘+’ here is the primitive ‘add’
else -- at least one of the operands is not numeric
local h = getbinhandler(opl, op2, "__add")
if h then
-— call the handler with both operands
return h(opl, op2)

else -- no handler available: default behavior
error("...")
end
end

end

“sub”: the - operation. Behavior similar to the “add” operation.
“mul”: the * operation. Behavior similar to the “add” operation.
“div”: the / operation. Behavior similar to the “add” operation.

“pow”: the ~ (exponentiation) operation.

function pow_event (opl, op2)
local ol, 02 = tonumber(opl), tonumber (op2)
if ol and 02 then -- both operands are numeric?
return __pow(ol, 02) -- call global ‘__pow’
else -- at least one of the operands is not numeric
local h = getbinhandler(opl, op2, "__pouw")
if h then
-- call the handler with both operands
return h(opl, op2)

else -- no handler available: default behavior
error("...")
end
end
end

“unm”: the unary - operation.

function unm_event (op)
local o = tonumber (op)

if o then -- operand is numeric?
return -o -- ‘-’ here is the primitive ‘unm’
else -- the operand is not numeric.

-- Try to get a handler from the operand

local h = metatable(op).__unm

if h then
-— call the handler with the operand and nil
return h(op, nil)

16

else -- no handler available: default behavior
error("...")
end
end
end

“concat”: the .. (concatenation) operation.

function concat_event (opl, op2)

if (type(opl) == "string" or type(opl) == "number") and
(type(op2) == "string" or type(op2) == "number") then
return opl .. op2 -- primitive string concatenation
else
local h = getbinhandler(opl, op2, "__concat")
if h then
return h(opl, op2)
else
error("...")
end
end
end

“eq”: the == operation. The function getcomphandler defines how Lua chooses a metamethod
for comparison operators. A metamethod only is selected when both objects being com-
pared have the same type and the same metamethod for the selected operation.

function getcomphandler (opl, op2, event)
if type(opl) "= type(op2) then return nil end
local mml = metatable(opl) [event]
local mm2 = metatable(op2) [event]
if mml == mm2 then return mml else return nil end
end

The “eq” event is defined as follows:

function eq_event (opl, op2)

if type(opl) ~= type(op2) then -- different types?
return false -- different objects

end

if opl == op2 then -- primitive equal?
return true -- objects are equal

end

-- try metamethod

local h = getcomphandler(opl, op2, "__eq")

if h then
return h(opl, op2)

else

return false

17

end
end

a "= Db is equivalent to not (a == b).

“1t”: the < operation.

function 1lt_event (opl, op2)

if type(opl) == "number" and type(op2) == "number" then
return opl < op2 —-— numeric comparison
elseif type(opl) == "string" and type(op2) == "string" then
return opl < op2 -- lexicographic comparison
else
local h = getcomphandler(opl, op2, "__1t")
if h then
return h(opl, op2)
else
error("...");
end
end
end

a > b is equivalent to b < a.

“le”: the <= operation.

function le_event (opl, op2)

if type(opl) == "number" and type(op2) == "number" then
return opl <= op2 -- numeric comparison
elseif type(opl) == "string" and type(op2) == "string" then
return opl <= op2 —-- lexicographic comparison
else
local h = getcomphandler(opl, op2, "__le")
if h then
return h(opl, op2)
else
h = getcomphandler(opl, op2, "__1t")
if h then
return not h(op2, opl)
else
error("...");
end
end
end
end

a >= b is equivalent to b <= a. Note that, in the absence of a “le” metamethod, Lua
tries the “It”, assuming that a <= b is equivalent to not (b < a).

“index”: The indexing access table [key].

18

function gettable_event (table, key)

local h
if type(table) == "table" then
local v = rawget(table, key)
if v "= nil then return v end
h = metatable(table).__index
if h == nil then return nil end
else

h = metatable(table).__index
if h == nil then

error("...");
end
end
if type(h) == "function" then
return h(table, key) -- call the handler
else return hlkey] —-- or repeat operation on it
end

“newindex”: The indexing assignment table[key] = value.

function settable_event (table, key, value)
local h
if type(table) == "table" then
local v = rawget(table, key)
if v "= nil then rawset(table, key, value); return end
h = metatable(table).__newindex
if h == nil then rawset(table, key, value); return end
else
h = metatable(table).__newindex

if h == nil then

error("...");
end
end
if type(h) == "function" then
return h(table, key,value) —-- call the handler
else hlkey] = value -- or repeat operation on it
end

“call”: called when Lua calls a value.

function function_event (func, ...)
if type(func) == "function" then
return func(unpack(arg)) -- primitive call
else
local h = metatable(func).__call
if h then
return h(func, unpack(arg))
else

19

error("...")
end
end
end

2.9 Garbage Collection

Lua does automatic memory management. That means that you do not have to worry about
allocating memory for new objects and freeing it when the objects are no longer needed. Lua
manages memory automatically by running a garbage collector from time to time to collect all
dead objects (that is, those objects that are no longer accessible from Lua). All objects in Lua are
subject to automatic management: tables, userdata, functions, threads, and strings.

Lua uses two numbers to control its garbage-collection cycles. One number counts how many
bytes of dynamic memory Lua is using; the other is a threshold. When the number of bytes crosses
the threshold, Lua runs the garbage collector, which reclaims the memory of all dead objects. The
byte counter is adjusted, and then the threshold is reset to twice the new value of the byte counter.

Through the C API, you can query those numbers and change the threshold (see §3.7). Setting
the threshold to zero actually forces an immediate garbage-collection cycle, while setting it to a
huge number effectively stops the garbage collector. Using Lua code you have a more limited control
over garbage-collection cycles, through the gcinfo and collectgarbage functions (see §5.1).

2.9.1 Garbage-Collection Metamethods

Using the C API, you can set garbage-collector metamethods for userdata (see §2.8). These
metamethods are also called finalizers. Finalizers allow you to coordinate Lua’s garbage collec-
tion with external resource management (such as closing files, network or database connections, or
freeing your own memory).

Free userdata with a field __gc in their metatables are not collected immediately by the garbage
collector. Instead, Lua puts them in a list. After the collection, Lua does the equivalent of the
following function for each userdata in that list:

function gc_event (udata)
local h = metatable(udata).__gc
if h then
h(udata)
end
end

At the end of each garbage-collection cycle, the finalizers for userdata are called in reverse order
of their creation, among those collected in that cycle. That is, the first finalizer to be called is the
one associated with the userdata created last in the program.

2.9.2 Weak Tables

A weak table is a table whose elements are weak references. A weak reference is ignored by the
garbage collector. In other words, if the only references to an object are weak references, then the
garbage collector will collect that object.

A weak table can have weak keys, weak values, or both. A table with weak keys allows the
collection of its keys, but prevents the collection of its values. A table with both weak keys and

20

weak values allows the collection of both keys and values. In any case, if either the key or the value
is collected, the whole pair is removed from the table. The weakness of a table is controlled by the
value of the __mode field of its metatable. If the __mode field is a string containing the character ‘k’,
the keys in the table are weak. If __mode contains ‘v’, the values in the table are weak.

After you use a table as a metatable, you should not change the value of its field __mode.
Otherwise, the weak behavior of the tables controlled by this metatable is undefined.

2.10 Coroutines

Lua supports coroutines, also called semi-coroutines or collaborative multithreading. A coroutine
in Lua represents an independent thread of execution. Unlike threads in multithread systems,
however, a coroutine only suspends its execution by explicitly calling a yield function.

You create a coroutine with a call to coroutine.create. Its sole argument is a function that is
the main function of the coroutine. The create function only creates a new coroutine and returns
a handle to it (an object of type thread); it does not start the coroutine execution.

When you first call coroutine.resume, passing as its first argument the thread returned by
coroutine.create, the coroutine starts its execution, at the first line of its main function. Extra
arguments passed to coroutine.resume are given as parameters for the coroutine main function.
After the coroutine starts running, it runs until it terminates or yields.

A coroutine can terminate its execution in two ways: Normally, when its main function returns
(explicitly or implicitly, after the last instruction); and abnormally, if there is an unprotected error.
In the first case, coroutine.resume returns true, plus any values returned by the coroutine main
function. In case of errors, coroutine.resume returns false plus an error message.

A coroutine yields by calling coroutine.yield. When a coroutine yields, the corresponding
coroutine.resume returns immediately, even if the yield happens inside nested function calls
(that is, not in the main function, but in a function directly or indirectly called by the main
function). In the case of a yield, coroutine.resume also returns true, plus any values passed to
coroutine.yield. The next time you resume the same coroutine, it continues its execution from
the point where it yielded, with the call to coroutine.yield returning any extra arguments passed
to coroutine.resume.

The coroutine.wrap function creates a coroutine like coroutine.create, but instead of re-
turning the coroutine itself, it returns a function that, when called, resumes the coroutine. Any
arguments passed to that function go as extra arguments to resume. The function returns all the
values returned by resume, except the first one (the boolean error code). Unlike coroutine.resume,
this function does not catch errors; any error is propagated to the caller.

As an example, consider the next code:

function fool (a)
print("foo", a)
return coroutine.yield(2*a)
end

co = coroutine.create(function (a,b)
print("co-body", a, b)
local r = fool(a+1)
print ("co-body", r)
local r, s = coroutine.yield(a+b, a-b)
print("co-body", r, s)

21

return b, "end"
end)

a, b = coroutine.resume(co, 1, 10)
print("main", a, b)

a, b, ¢ = coroutine.resume(co, "r")
print ("main", a, b, c)

a, b, ¢ = coroutine.resume(co, "x", "y")
print("main", a, b, c¢)

a, b = coroutine.resume(co, "x", "y")
print ("main", a, b)

When you run it, it produces the following output:

co-body 1 10

foo 2

main true 4

co-body r

main true 11 -9

co-body x y

main true 10 end

main false cannot resume dead coroutine

3 The Application Program Interface

This section describes the C API for Lua, that is, the set of C functions available to the host program
to communicate with Lua. All API functions and related types and constants are declared in the
header file lua.h.

Even when we use the term “function”, any facility in the API may be provided as a macro
instead. All such macros use each of its arguments exactly once (except for the first argument,
which is always a Lua state), and so do not generate hidden side-effects.

3.1 States

The Lua library is fully reentrant: it has no global variables. The whole state of the Lua interpreter
(global variables, stack, etc.) is stored in a dynamically allocated structure of type lua_State. A
pointer to this state must be passed as the first argument to every function in the library, except
to lua_open, which creates a Lua state from scratch.

Before calling any API function, you must create a state by calling lua_open:

lua_State *lua_open (void);
To release a state created with lua_open, call lua_close:
void lua_close (lua_State *L);

This function destroys all objects in the given Lua state (calling the corresponding garbage-
collection metamethods, if any) and frees all dynamic memory used by that state. On several
platforms, you may not need to call this function, because all resources are naturally released when
the host program ends. On the other hand, long-running programs, such as a daemon or a web
server, might need to release states as soon as they are not needed, to avoid growing too large.

22

3.2 The Stack and Indices

Lua uses a virtual stack to pass values to and from C. Each element in this stack represents a Lua
value (nil, number, string, etc.).

Whenever Lua calls C, the called function gets a new stack, which is independent of previous
stacks and of stacks of C functions that are still active. That stack initially contains any arguments
to the C function, and it is where the C function pushes its results to be returned to the caller
(see §3.16).

For convenience, most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack by using an index: A positive index represents
an absolute stack position (starting at 1); a negative index represents an offset from the top of
the stack. More specifically, if the stack has n elements, then index 1 represents the first element
(that is, the element that was pushed onto the stack first) and index n represents the last element;
index —1 also represents the last element (that is, the element at the top) and index —n represents
the first element. We say that an index is walid if it lies between 1 and the stack top (that is, if
1 <= abs(index) <= top).

At any time, you can get the index of the top element by calling lua_gettop:

int lua_gettop (lua_State *L);

Because indices start at 1, the result of lua_gettop is equal to the number of elements in the stack
(and so 0 means an empty stack).

When you interact with Lua API, you are responsible for controlling stack overflow. The
function

int lua_checkstack (lua_State *L, int extra);

grows the stack size to top + extra elements; it returns false if it cannot grow the stack to that
size. This function never shrinks the stack; if the stack is already larger than the new size, it is left
unchanged.

Whenever Lua calls C, it ensures that at least LUA_MINSTACK stack positions are available.
LUA_MINSTACK is defined in lua.h as 20, so that usually you do not have to worry about stack
space unless your code has loops pushing elements onto the stack.

Most query functions accept as indices any value inside the available stack space, that is,
indices up to the maximum stack size you have set through lua_checkstack. Such indices are
called acceptable indices. More formally, we define an acceptable index as follows:

(index < 0 && abs(index) <= top) || (index > 0 &% index <= stackspace)

Note that 0 is never an acceptable index.

Unless otherwise noted, any function that accepts valid indices can also be called with pseudo-
indices, which represent some Lua values that are accessible to the C code but are not in the
stack. Pseudo-indices are used to access the global environment, the registry, and the upvalues of
a C function (see §3.17).

3.3 Stack Manipulation

The API offers the following functions for basic stack manipulation:

23

void lua_settop (lua_State *L, int index);
void lua_pushvalue (lua_State *L, int index);
void lua_remove (lua_State *L, int index);
void lua_insert (lua_State *L, int index);
void lua_replace (lua_State *L, int index);

lua_settop accepts any acceptable index, or 0, and sets the stack top to that index. If the
new top is larger than the old one, then the new elements are filled with nil. If index is 0, then
all stack elements are removed. A useful macro defined in the lua.h is

#define lua_pop(L,n) lua_settop(L, -(n)-1)

which pops n elements from the stack.

lua_pushvalue pushes onto the stack a copy of the element at the given index. lua_remove
removes the element at the given position, shifting down the elements above that position to fill
the gap. lua_insert moves the top element into the given position, shifting up the elements above
that position to open space. lua_replace moves the top element into the given position, without
shifting any element (therefore replacing the value at the given position). All these functions accept
only valid indices. (You cannot call lua_remove or lua_insert with pseudo-indices, as they do
not represent a stack position.)

As an example, if the stack starts as 10 20 30 40 50% (from bottom to top; the ‘*’ marks the
top), then

lua_pushvalue(L, 3) --> 10 20 30 40 50 30%*
lua_pushvalue(L, -1) --> 10 20 30 40 50 30 30%
lua_remove(L, -3) --> 10 20 30 40 30 30=%
lua_remove(L, 6) --> 10 20 30 40 30%
lua_insert (L, 1) --> 30 10 20 30 40x*
lua_insert(L, -1) --> 30 10 20 30 40* (no effect)
lua_replace(L, 2) --> 30 40 20 30«

lua_settop(L, -3) --> 30 40%

lua_settop(L, 6) --> 30 40 nil nil nil nilx

3.4 Querying the Stack

To check the type of a stack element, the following functions are available:

int lua_type (lua_State *L, int index);
int lua_isnil (lua_State *L, int index);
int lua_isboolean (lua_State *L, int index);
int lua_isnumber (lua_State *L, int index);
int lua_isstring (lua_State *L, int index);
int lua_istable (lua_State *L, int index);
int lua_isfunction (lua_State *L, int index);
int lua_iscfunction (lua_State *L, int index);
int lua_isuserdata (lua_State *L, int index);

int lua_islightuserdata (lua_State *L, int index);

These functions can be called with any acceptable index.

24

lua_type returns the type of a value in the stack, or LUA_TNONE for a non-valid index (that
is, if that stack position is “empty”). The types returned by lua_type are coded by the following
constants defined in lua.h: LUA_TNIL, LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING, LUA_TTABLE,
LUA_TFUNCTION, LUA_TUSERDATA, LUA_TTHREAD, LUA_TLIGHTUSERDATA. The following function trans-
lates these constants to strings:

const char *lua_typename (lua_State *L, int type);

The lua_is* functions return 1 if the object is compatible with the given type, and 0 oth-
erwise. lua_isboolean is an exception to this rule: It succeeds only for boolean values (oth-
erwise it would be useless, as any value has a boolean value). They always return 0 for a
non-valid index. lua_isnumber accepts numbers and numerical strings; lua_isstring accepts
strings and numbers (see §2.2.1); lua_isfunction accepts both Lua functions and C functions;
and lua_isuserdata accepts both full and light userdata. To distinguish between Lua functions
and C functions, you can use lua_iscfunction. To distinguish between full and light userdata,
you can use lua_islightuserdata. To distinguish between numbers and numerical strings, you
can use lua_type.

The API also contains functions to compare two values in the stack:

int lua_equal (lua_State *L, int index1, int index2);
int lua_rawequal (lua_State *L, int indexl, int index2);
int lua_lessthan (lua_State *L, int indexl, int index2);

lua_equal and lua_lessthan are equivalent to their counterparts in Lua (see §2.5.2). lua_rawequal
compares the values for primitive equality, without metamethods. These functions return 0 (false)
if any of the indices are non-valid.

3.5 Getting Values from the Stack

To translate a value in the stack to a specific C type, you can use the following conversion functions:

int lua_toboolean (lua_State *L, int index);
lua_Number lua_tonumber (lua_State *L, int index);
const char *lua_tostring (lua_State *L, int index);
size_t lua_strlen (lua_State *L, int index);
lua_CFunction lua_tocfunction (lua_State *L, int index);
void *lua_touserdata (lua_State *L, int index);
lua_State *lua_tothread (lua_State *L, int index);
void *lua_topointer (lua_State *L, int index);

These functions can be called with any acceptable index. When called with a non-valid index, they
act as if the given value had an incorrect type.

lua_toboolean converts the Lua value at the given index to a C “boolean” value (0 or 1). Like
all tests in Lua, lua_toboolean returns 1 for any Lua value different from false and nil; otherwise
it returns 0. It also returns 0 when called with a non-valid index. (If you want to accept only real
boolean values, use lua_isboolean to test the type of the value.)

lua_tonumber converts the Lua value at the given index to a number (by default, lua_Number is
double). The Lua value must be a number or a string convertible to number (see §2.2.1); otherwise,
lua_tonumber returns 0.

25

lua_tostring converts the Lua value at the given index to a string (const charx). The Lua
value must be a string or a number; otherwise, the function returns NULL. If the value is a number,
then lua_tostring also changes the actual value in the stack to a string. (This change confuses
lua_next when lua_tostring is applied to keys.) lua_tostring returns a fully aligned pointer
to a string inside the Lua state. This string always has a zero (’\0’) after its last character (as
in C), but may contain other zeros in its body. If you do not know whether a string may contain
zeros, you can use lua_strlen to get its actual length. Because Lua has garbage collection, there
is no guarantee that the pointer returned by lua_tostring will be valid after the corresponding
value is removed from the stack. If you need the string after the current function returns, then you
should duplicate it or put it into the registry (see §3.18).

lua_tocfunction converts a value in the stack to a C function. This value must be a C function;
otherwise, lua_tocfunction returns NULL. The type lua_CFunction is explained in §3.16.

lua_tothread converts a value in the stack to a Lua thread (represented as lua_State *).
This value must be a thread; otherwise, lua_tothread returns NULL.

lua_topointer converts a value in the stack to a generic C pointer (void *). The value may be
a userdata, a table, a thread, or a function; otherwise, lua_topointer returns NULL. Lua ensures
that different objects of the same type return different pointers. There is no direct way to convert
the pointer back to its original value. Typically this function is used for debug information.

lua_touserdata is explained in §3.8.

3.6 Pushing Values onto the Stack

The API has the following functions to push C values onto the stack:

void lua_pushboolean (lua_State *L, int b);

void lua_pushnumber (lua_State *L, lua_Number n);

void lua_pushlstring (lua_State *L, const char *s, size_t len);
void lua_pushstring (lua_State *L, const char *s);

void lua_pushnil (lua_State *L);

void lua_pushcfunction (lua_State *L, lua_CFunction f);

void lua_pushlightuserdata (lua_State *L, void *p);

These functions receive a C value, convert it to a corresponding Lua value, and push the result
onto the stack. In particular, lua_pushlstring and lua_pushstring make an internal copy of
the given string. lua_pushstring can only be used to push proper C strings (that is, strings that
end with a zero and do not contain embedded zeros); otherwise, you should use the more general
lua_pushlstring, which accepts an explicit size.

You can also push “formatted” strings:

const char *lua_pushfstring (lua_State *L, const char *fmt, ...);
const char *lua_pushvfstring (lua_State *L, const char *fmt, va_list argp);

These functions push onto the stack a formatted string and return a pointer to that string. They
are similar to sprintf and vsprintf, but with some important differences:

e You do not have to allocate the space for the result: The result is a Lua string and Lua takes
care of memory allocation (and deallocation, through garbage collection).

e The conversion specifiers are quite restricted. There are no flags, widths, or precisions. The
conversion specifiers can be simply ‘%%’ (inserts a ‘%’ in the string), ‘%s’ (inserts a zero-
terminated string, with no size restrictions), ‘%f’ (inserts a lua_Number), ‘%d’ (inserts an
int), and ‘%c’ (inserts an int as a character).

26

The function
void lua_concat (lua_State *L, int n);

concatenates the n values at the top of the stack, pops them, and leaves the result at the top. If
n is 1, the result is that single string (that is, the function does nothing); if n is 0, the result is the
empty string. Concatenation is done following the usual semantics of Lua (see §2.5.4).

3.7 Controlling Garbage Collection

Lua uses two numbers to control its garbage collection: the count and the threshold (see §2.9). The
first counts the amount of memory in use by Lua; when the count reaches the threshold, Lua runs
its garbage collector. After the collection, the count is updated and the threshold is set to twice
the count value.

You can access the current values of these two numbers through the following functions:

int lua_getgccount (lua_State *L);
int lua_getgcthreshold (lua_State *L);

Both return their respective values in Kbytes. You can change the threshold value with
void lua_setgcthreshold (lua_State *L, int newthreshold);

Again, the newthreshold value is given in Kbytes. When you call this function, Lua sets the new
threshold and checks it against the byte counter. If the new threshold is less than the byte counter,
then Lua immediately runs the garbage collector. In particular lua_setgcthreshold(L,0) forces
a garbage collection. After the collection, a new threshold is set according to the previous rule.

3.8 Userdata

Userdata represents C values in Lua. Lua supports two types of userdata: full userdata and light
userdata.

A full userdata represents a block of memory. It is an object (like a table): You must create
it, it can have its own metatable, and you can detect when it is being collected. A full userdata is
only equal to itself (under raw equality).

A light userdata represents a pointer. It is a value (like a number): You do not create it, it has
no metatables, it is not collected (as it was never created). A light userdata is equal to “any” light
userdata with the same C address.

In Lua code, there is no way to test whether a userdata is full or light; both have type userdata.
In C code, lua_type returns LUA_TUSERDATA for full userdata, and LUA_TLIGHTUSERDATA for light
userdata.

You can create a new full userdata with the following function:

void *lua_newuserdata (lua_State *L, size_t size);

This function allocates a new block of memory with the given size, pushes on the stack a new
userdata with the block address, and returns this address.

To push a light userdata into the stack you use lua_pushlightuserdata (see §3.6).

lua_touserdata (see §3.5) retrieves the value of a userdata. When applied on a full userdata,
it returns the address of its block; when applied on a light userdata, it returns its pointer; when
applied on a non-userdata value, it returns NULL.

When Lua collects a full userdata, it calls the userdata’s gc metamethod, if any, and then it
frees the userdata’s corresponding memory.

27

3.9 Metatables

The following functions allow you to manipulate the metatables of an object:

int lua_getmetatable (lua_State *L, int index);
int lua_setmetatable (lua_State *L, int index);

lua_getmetatable pushes on the stack the metatable of a given object. If the index is not valid,
or if the object does not have a metatable, lua_getmetatable returns 0 and pushes nothing on
the stack.

lua_setmetatable pops a table from the stack and sets it as the new metatable for the given
object. lua_setmetatable returns 0 when it cannot set the metatable of the given object (that is,
when the object is neither a userdata nor a table); even then it pops the table from the stack.

3.10 Loading Lua Chunks

You can load a Lua chunk with lua_load:

typedef const char * (*lua_Chunkreader)
(lua_State *L, void *data, size_t *size);

int lua_load (lua_State *L, lua_Chunkreader reader, void *data,
const char *chunkname);

The return values of 1lua_load are:

e 0 — no errors;
e LUA_ERRSYNTAX — syntax error during pre-compilation.

e LUA_ERRMEM — memory allocation error.

If there are no errors, lua_load pushes the compiled chunk as a Lua function on top of the stack.
Otherwise, it pushes an error message.

lua_load automatically detects whether the chunk is text or binary, and loads it accordingly
(see program luac).

lua_load uses a user-supplied reader function to read the chunk. Every time it needs another
piece of the chunk, lua_load calls the reader, passing along its data parameter. The reader must
return a pointer to a block of memory with a new piece of the chunk and set size to the block size.
To signal the end of the chunk, the reader returns NULL. The reader function may return pieces of
any size greater than zero.

In the current implementation, the reader function cannot call any Lua function; to ensure that,
it always receives NULL as the Lua state.

The chunkname is used for error messages and debug information (see §4).

See the auxiliary library (lauxlib.c) for examples of how to use lua_load and for some ready-
to-use functions to load chunks from files and strings.

3.11 Manipulating Tables

Tables are created by calling the function

void lua_newtable (lua_State *L);

28

This function creates a new, empty table and pushes it onto the stack.
To read a value from a table that resides somewhere in the stack, call

void lua_gettable (lua_State *L, int index);

where index points to the table. lua_gettable pops a key from the stack and returns (on the
stack) the contents of the table at that key. The table is left where it was in the stack. As in Lua,
this function may trigger a metamethod for the “index” event (see §2.8). To get the real value of
any table key, without invoking any metamethod, use the raw version:

void lua_rawget (lua_State *L, int index);

To store a value into a table that resides somewhere in the stack, you push the key and then
the value onto the stack, and call

void lua_settable (lua_State *L, int index);

where index points to the table. lua_settable pops from the stack both the key and the value.
The table is left where it was in the stack. As in Lua, this operation may trigger a metamethod
for the “settable” or “newindex” events. To set the real value of any table index, without invoking
any metamethod, use the raw version:

void lua_rawset (lua_State *L, int index);

You can traverse a table with the function
int lua_next (lua_State *L, int index);

where index points to the table to be traversed. The function pops a key from the stack, and
pushes a key-value pair from the table (the “next” pair after the given key). If there are no more
elements, then lua_next returns 0 (and pushes nothing). Use a nil key to signal the start of a
traversal.

A typical traversal looks like this:

/* table is in the stack at index ‘t’ */
lua_pushnil(L); /* first key */
while (lua_next(L, t) !'= 0) {
/* ‘key’ is at index -2 and ‘value’ at index -1 */
printf("%s - %s\n",
lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1)));
lua_pop(L, 1); /* removes ‘value’; keeps ‘key’ for next iteration */

¥

While traversing a table, do not call lua_tostring directly on a key, unless you know that
the key is actually a string. Recall that lua_tostring changes the value at the given index; this
confuses the next call to lua_next.

29

3.12 Manipulating Environments

All global variables are kept in ordinary Lua tables, called environments. The initial environment
is called the global environment. This table is always at pseudo-index LUA_GLOBALSINDEX.

To access and change the value of global variables, you can use regular table operations over an
environment table. For instance, to access the value of a global variable, do

lua_pushstring(L, varname);
lua_gettable(L, LUA_GLOBALSINDEX) ;

You can change the global environment of a Lua thread using lua_replace.
The following functions get and set the environment of Lua functions:

void lua_getfenv (lua_State *L, int index);
int lua_setfenv (lua_State *L, int index);

lua_getfenv pushes on the stack the environment table of the function at index index in the stack.
If the function is a C function, lua_getfenv pushes the global environment. lua_setfenv pops
a table from the stack and sets it as the new environment for the function at index index in the
stack. If the object at the given index is not a Lua function, lua_setfenv returns 0.

3.13 Using Tables as Arrays

The API has functions that help to use Lua tables as arrays, that is, tables indexed by numbers
only:

void lua_rawgeti (lua_State *L, int index, int n);
void lua_rawseti (lua_State *L, int index, int n);

lua_rawgeti pushes the value of the n-th element of the table at stack position index. lua_rawseti
sets the value of the n-th element of the table at stack position index to the value at the top of
the stack, removing this value from the stack.

3.14 Calling Functions

Functions defined in Lua and C functions registered in Lua can be called from the host program.
This is done using the following protocol: First, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed in direct order, that is, the first argument is pushed
first. Finally, the function is called using

void lua_call (lua_State *L, int nargs, int nresults);

nargs is the number of arguments that you pushed onto the stack. All arguments and the function
value are popped from the stack, and the function results are pushed. The number of results are
adjusted to nresults, unless nresults is LUA_MULTRET. In that case, all results from the function
are pushed. Lua takes care that the returned values fit into the stack space. The function results
are pushed onto the stack in direct order (the first result is pushed first), so that after the call the
last result is on the top.

The following example shows how the host program may do the equivalent to this Lua code:

a = £f("how", t.x, 14)

30

Here it is in C:

lua_pushstring(L, "t");

lua_gettable(L, LUA_GLOBALSINDEX); /* global ‘t’ (for later use) */
lua_pushstring(L, "a"); /* var name */
lua_pushstring(L, "f"); /* function name */
lua_gettable(L, LUA_GLOBALSINDEX); /* function to be called */
lua_pushstring(L, "how"); /* 1st argument */
lua_pushstring(L, "x"); /* push the string "x" */
lua_gettable(L, -5); /* push result of t.x (2nd arg) */
lua_pushnumber (L, 14); /* 3rd argument */
lua_call(L, 3, 1); /* call function with 3 arguments and 1 result */
lua_settable(L, LUA_GLOBALSINDEX); /* set global variable ‘a’ */
lua_pop(L, 1); /* remove ‘t’ from the stack */

Note that the code above is “balanced”: at its end, the stack is back to its original configuration.
This is considered good programming practice.

(We did this example using only the raw functions provided by Lua’s API, to show all the
details. Usually programmers define and use several macros and auxiliary functions that provide
higher level access to Lua. See the source code of the standard libraries for examples.)

3.15 Protected Calls

When you call a function with 1ua_call, any error inside the called function is propagated upwards
(with a longjmp). If you need to handle errors, then you should use lua_pcall:

int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);

Both nargs and nresults have the same meaning as in 1ua_call. If there are no errors during the
call, lua_pcall behaves exactly like lua_call. However, if there is any error, lua_pcall catches
it, pushes a single value at the stack (the error message), and returns an error code. Like lua_call,
lua_pcall always removes the function and its arguments from the stack.

If errfunc is 0, then the error message returned is exactly the original error message. Otherwise,
errfunc gives the stack index for an error handler function. (In the current implementation, that
index cannot be a pseudo-index.) In case of runtime errors, that function will be called with the
error message and its return value will be the message returned by lua_pcall.

Typically, the error handler function is used to add more debug information to the error message,
such as a stack traceback. Such information cannot be gathered after the return of lua_pcall,
since by then the stack has unwound.

The lua_pcall function returns 0 in case of success or one of the following error codes (defined
in lua.h):

e LUA_ERRRUN — a runtime error.

e LUA_ERRMEM — memory allocation error. For such errors, Lua does not call the error handler
function.

e LUA_ERRERR — error while running the error handler function.

31

3.16 Defining C Functions

Lua can be extended with functions written in C. These functions must be of type lua_CFunction,
which is defined as

typedef int (*lua_CFunction) (lua_State *L);

A C function receives a Lua state and returns an integer, the number of values it wants to return
to Lua.

In order to communicate properly with Lua, a C function must follow the following protocol,
which defines the way parameters and results are passed: A C function receives its arguments from
Lua in its stack in direct order (the first argument is pushed first). So, when the function starts, its
first argument (if any) is at index 1. To return values to Lua, a C function just pushes them onto
the stack, in direct order (the first result is pushed first), and returns the number of results. Any
other value in the stack below the results will be properly discharged by Lua. Like a Lua function,
a C function called by Lua can also return many results.

As an example, the following function receives a variable number of numerical arguments and
returns their average and sum:

static int foo (lua_State *L) {

int n = lua_gettop(L); /* number of arguments */
lua_Number sum = O;
int i;

for (i = 1; i <= n; i++) {
if (!lua_isnumber (L, i)) {
lua_pushstring(L, "incorrect argument to function ‘average’");
lua_error(L);

}

sum += lua_tonumber (L, i);
}
lua_pushnumber (L, sum/n); /* first result */
lua_pushnumber (L, sum); /* second result */
return 2; /* number of results */

}
To register a C function to Lua, there is the following convenience macro:

#define lua_register(L,n,f) \
(lua_pushstring(L, n), \
lua_pushcfunction(L, £), \
lua_settable(L, LUA_GLOBALSINDEX))

/* lua_State *L; */
/* const char *n; */
/* lua_CFunction f; */

which receives the name the function will have in Lua and a pointer to the function. Thus, the
C function foo above may be registered in Lua as average by calling

lua_register(L, "average", foo);

32

3.17 Defining C Closures

When a C function is created, it is possible to associate some values with it, thus creating a
C closure; these values are then accessible to the function whenever it is called. To associate values
with a C function, first these values should be pushed onto the stack (when there are multiple
values, the first value is pushed first). Then the function

void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);

is used to push the C function onto the stack, with the argument n telling how many values should
be associated with the function (lua_pushcclosure also pops these values from the stack); in fact,
the macro lua_pushcfunction is defined as lua_pushcclosure with n set to 0.

Then, whenever the C function is called, those values are located at specific pseudo-indices.
Those pseudo-indices are produced by a macro lua_upvalueindex. The first value associated with
a function is at position lua_upvalueindex (1), and so on. Any access to lua_upvalueindex(n),
where n is greater than the number of upvalues of the current function, produces an acceptable
(but invalid) index.

For examples of C functions and closures, see the standard libraries in the official Lua distribu-
tion (src/lib/*.c).

3.18 Registry

Lua provides a registry, a pre-defined table that can be used by any C code to store whatever Lua
value it needs to store, specially if the C code needs to keep that Lua value outside the life span
of a C function. This table is always located at pseudo-index LUA_REGISTRYINDEX. Any C library
can store data into this table, as long as it chooses keys different from other libraries. Typically,
you should use as key a string containing your library name or a light userdata with the address of
a C object in your code.

The integer keys in the registry are used by the reference mechanism, implemented by the
auxiliary library, and therefore should not be used by other purposes.

3.19 Error Handling in C

Internally, Lua uses the C longjmp facility to handle errors. When Lua faces any error (such as
memory allocation errors, type errors, syntax errors) it raises an error, that is, it does a long jump.
A protected environment uses setjmp to set a recover point; any error jumps to the most recent
active recover point.

If an error happens outside any protected environment, Lua calls a panic function and then
calls exit (EXIT_FAILURE). You can change the panic function with

lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);

Your new panic function may avoid the application exit by never returning (e.g., by doing a long
jump). Nevertheless, the corresponding Lua state will not be consistent; the only safe operation
with it is to close it.

Almost any function in the API may raise an error, for instance due to a memory allocation
error. The following functions run in protected mode (that is, they create a protected environment
to run), so they never raise an error: lua_open, lua_close, lua_load, and lua_pcall.

There is yet another function that runs a given C function in protected mode:

33

int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);

lua_cpcall calls func in protected mode. func starts with only one element in its stack, a light
userdata containing ud. In case of errors, lua_cpcall returns the same error codes as lua_pcall
(see §3.15), plus the error object on the top of the stack; otherwise, it returns zero, and does not
change the stack. Any value returned by func is discarded.

C code can generate a Lua error calling the function

void lua_error (lua_State *L);

The error message (which actually can be any type of object) must be on the stack top. This
function does a long jump, and therefore never returns.

3.20 Threads

Lua offers partial support for multiple threads of execution. If you have a C library that offers
multi-threading, then Lua can cooperate with it to implement the equivalent facility in Lua. Also,
Lua implements its own coroutine system on top of threads. The following function creates a new
thread in Lua:

lua_State *lua_newthread (lua_State *L);

This function pushes the thread on the stack and returns a pointer to a lua_State that represents
this new thread. The new state returned by this function shares with the original state all global
objects (such as tables), but has an independent run-time stack.

Each thread has an independent global environment table. When you create a thread, this table
is the same as that of the given state, but you can change each one independently.

There is no explicit function to close or to destroy a thread. Threads are subject to garbage
collection, like any Lua object.

To manipulate threads as coroutines, Lua offers the following functions:

int lua_resume (lua_State *L, int narg);
int lua_yield (lua_State *L, int nresults);

To start a coroutine, you first create a new thread; then you push on its stack the body function
plus any eventual arguments; then you call lua_resume, with narg being the number of arguments.
This call returns when the coroutine suspends or finishes its execution. When it returns, the stack
contains all values passed to lua_yield, or all values returned by the body function. lua_resume
returns 0 if there are no errors running the coroutine, or an error code (see §3.15). In case of errors,
the stack contains only the error message. To restart a coroutine, you put on its stack only the
values to be passed as results from yield, and then call lua_resume.

The lua_yield function can only be called as the return expression of a C function, as follows:

return lua_yield (L, nresults);

When a C function calls lua_yield in that way, the running coroutine suspends its execution, and
the call to lua_resume that started this coroutine returns. The parameter nresults is the number
of values from the stack that are passed as results to lua_resume.

To exchange values between different threads, you may use lua_xmove:

void lua_xmove (lua_State *from, lua_State *to, int n);

It pops n values from the stack from, and puhses them into the stack to.

34

4 The Debug Interface

Lua has no built-in debugging facilities. Instead, it offers a special interface by means of functions
and hooks. This interface allows the construction of different kinds of debuggers, profilers, and
other tools that need “inside information” from the interpreter.

4.1 Stack and Function Information
The main function to get information about the interpreter runtime stack is
int lua_getstack (lua_State *L, int level, lua_Debug *ar);

This function fills parts of a lua_Debug structure with an identification of the activation record of
the function executing at a given level. Level 0 is the current running function, whereas level n + 1
is the function that has called level n. When there are no errors, lua_getstack returns 1; when
called with a level greater than the stack depth, it returns 0.

The structure lua_Debug is used to carry different pieces of information about an active function:

typedef struct lua_Debug {

int event;

const char *name; /* (n) */

const char *namewhat; /* (n) ‘global’, ‘local’, ‘field’, ‘method’ */
const char *what; /* (8) ‘Lua’ function, ‘C’ function, Lua ‘main’ */
const char *source; /x (S) x/

int currentline; /x (1) */

int nups; /* (u) number of upvalues */

int linedefined; /% (8) x/

char short_src[LUA_IDSIZE]; /* (S) */
/* private part */

} lua_Debug;

lua_getstack fills only the private part of this structure, for later use. To fill the other fields of
lua_Debug with useful information, call

int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);

This function returns 0 on error (for instance, an invalid option in what). Each character in
the string what selects some fields of the structure ar to be filled, as indicated by the letter in
parentheses in the definition of 1ua_Debug above: ‘S’ fills in the fields source, linedefined, and
what; ‘1’ fills in the field currentline, etc. Moreover, ‘f’ pushes onto the stack the function that
is running at the given level.

To get information about a function that is not active (that is, not in the stack), you push it
onto the stack and start the what string with the character ‘>’. For instance, to know in which line
a function £ was defined, you can write

lua_Debug ar;

lua_pushstring(L, "f");

lua_gettable(L, LUA_GLOBALSINDEX); /* get global ‘f’ */
lua_getinfo(L, ">S", &ar);

printf ("%d\n", ar.linedefined);

35

The fields of 1ua_Debug have the following meaning;:

source If the function was defined in a string, then source is that string. If the function was
defined in a file, then source starts with a ‘@ followed by the file name.

short_src A “printable” version of source, to be used in error messages.
linedefined the line number where the definition of the function starts.

what the string "Lua" if this is a Lua function, "C" if this is a C function, "main" if this is the
main part of a chunk, and "tail" if this was a function that did a tail call. In the latter
case, Lua has no other information about this function.

currentline the current line where the given function is executing. When no line information
is available, currentline is set to —1.

name a reasonable name for the given function. Because functions in Lua are first class values,
they do not have a fixed name: Some functions may be the value of multiple global
variables, while others may be stored only in a table field. The lua_getinfo function
checks how the function was called or whether it is the value of a global variable to find
a suitable name. If it cannot find a name, then name is set to NULL.

namewhat Explains the name field. The value of namewhat can be "global", "local", "method",
"field", or "" (the empty string), according to how the function was called. (Lua uses
the empty string when no other option seems to apply.)

nups The number of upvalues of the function.

4.2 Manipulating Local Variables and Upvalues

For the manipulation of local variables and upvalues, the debug interface uses indices: The first
parameter or local variable has index 1, and so on, until the last active local variable. Upvalues
have no particular order, as they are active through the whole function.

The following functions allow the manipulation of the local variables of a given activation record:

const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);
const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);

The parameter ar must be a valid activation record that was filled by a previous call to lua_getstack
or given as argument to a hook (see §4.3). lua_getlocal gets the index n of a local variable, pushes
the variable’s value onto the stack, and returns its name. lua_setlocal assigns the value at the
top of the stack to the variable and returns its name. Both functions return NULL when the index
is greater than the number of active local variables.

The following functions allow the manipulation of the upvalues of a given function (unlike local
variables, the upvalues of a function are accessible even when the function is not active):

const char *lua_getupvalue (lua_State *L, int funcindex, int n);
const char *lua_setupvalue (lua_State *L, int funcindex, int n);

These functions operate both on Lua functions and on C functions. (For Lua functions, upvalues
are the external local variables that the function uses, and that consequently are included in its
closure.) funcindex points to a function in the stack. lua_getpuvalue gets the index n of an
upvalue, pushes the upvalue’s value onto the stack, and returns its name. lua_setupvalue assigns
the value at the top of the stack to the upvalue and returns its name. Both functions return NULL
when the index is greater than the number of upvalues. For C functions, these functions use the
empty string "" as a name for all upvalues.

36

As an example, the following function lists the names of all local variables and upvalues for a
function at a given level of the stack:

int listvars (lua_State *L, int level) {

lua_Debug ar;

int 1i;

const char *name;

if (lua_getstack(L, level, &ar) == 0)
return 0; /* failure: no such level in the stack */

i=1;

while ((name = lua_getlocal(L, &ar, i++)) != NULL) {
printf ("local %d %s\n", i-1, name);
lua_pop(L, 1); /* remove variable value */

}
lua_getinfo(L, "f", &ar); /* retrieves function */
i=1;

while ((name = lua_getpuvalue(L, -1, i++)) != NULL) {
printf ("upvalue %d %s\n", i-1, name);
lua_pop(L, 1); /* remove upvalue value */

}

return 1;

4.3 Hooks

Lua offers a mechanism of hooks, which are user-defined C functions that are called during the
program execution. A hook may be called in four different events: a call event, when Lua calls a
function; a return event, when Lua returns from a function; a line event, when Lua starts executing
a new line of code; and a count event, which happens every “count” instructions. Lua identifies
these events with the following constants: LUA_HOOKCALL, LUA_HOOKRET (or LUA_HOOKTAILRET, see
bekNN),LUA_HOOKLINE,and.LUA_HUOKCOUNT.

A hook has type lua_Hook, defined as follows:

typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
You can set the hook with the following function:
int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);

func is the hook. mask specifies on which events the hook will be called: It is formed by a
disjunction of the constants LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, and LUA_MASKCOUNT.
The count argument is only meaningful when the mask includes LUA_MASKCOUNT. For each event,
the hook is called as explained below:

The call hook is called when the interpreter calls a function. The hook is called just after
Lua enters the new function.

The return hook is called when the interpreter returns from a function. The hook is called
just before Lua leaves the function.

37

The line hook is called when the interpreter is about to start the execution of a new line
of code, or when it jumps back in the code (even to the same line). (This event only
happens while Lua is executing a Lua function.)

The count hook is called after the interpreter executes every count instructions. (This event
only happens while Lua is executing a Lua function.)

A hook is disabled by setting mask to zero.
You can get the current hook, the current mask, and the current count with the next functions:

lua_Hook lua_gethook (lua_State *L);
int lua_gethookmask (lua_State *L);
int lua_gethookcount (lua_State *L);

Whenever a hook is called, its ar argument has its field event set to the specific event that
triggered the hook. Moreover, for line events, the field currentline is also set. To get the value
of any other field in ar, the hook must call 1lua_getinfo. For return events, event may be
LUA_HOOKRET, the normal value, or LUA_HOOKTAILRET. In the latter case, Lua is simulating a return
from a function that did a tail call; in this case, it is useless to call lua_getinfo.

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook calls back
Lua to execute a function or a chunk, that execution occurs without any calls to hooks.

5 Standard Libraries

The standard libraries provide useful functions that are implemented directly through the C APL.
Some of these functions provide essential services to the language (e.g., type and getmetatable);
others provide access to “outside” services (e.g., I/O); and others could be implemented in Lua
itself, but are quite useful or have critical performance to deserve an implementation in C (e.g.,
sort).

All libraries are implemented through the official C API and are provided as separate C modules.
Currently, Lua has the following standard libraries:

e basic library;

e string manipulation;

e table manipulation;

e mathematical functions (sin, log, etc.);

e input and output;

e operating system facilities;

e debug facilities.
Except for the basic library, each library provides all its functions as fields of a global table or as
methods of its objects.

To have access to these libraries, the C host program must first call the functions luaopen_base
(for the basic library), luaopen_string (for the string library), luaopen_table (for the table
library), luaopen_math (for the mathematical library), luaopen_io (for the I/O and the Operating

System libraries), and luaopen_debug (for the debug library). These functions are declared in
lualib.h.

38

5.1 Basic Functions

The basic library provides some core functions to Lua. If you do not include this library in your ap-
plication, you should check carefully whether you need to provide some alternative implementation
for some of its facilities.

e assert (v [, message])

Issues an error when the value of its argument v is nil or false; otherwise, returns this value.
message is an error message; when absent, it defaults to “assertion failed!”

e collectgarbage ([limit])

Sets the garbage-collection threshold to the given limit (in Kbytes) and checks it against the byte
counter. If the new threshold is smaller than the byte counter, then Lua immediately runs the
garbage collector (see §2.9). If 1imit is absent, it defaults to zero (thus forcing a garbage-collection
cycle).

e dofile (filename)

Opens the named file and executes its contents as a Lua chunk. When called without arguments,
dofile executes the contents of the standard input (stdin). Returns any value returned by the
chunk. In case of errors, dofile propagates the error to its caller (that is, it does not run in
protected mode).

e error (message [, levell)

Terminates the last protected function called and returns message as the error message. Function
error never returns.

The level argument specifies where the error message points the error. With level 1 (the
default), the error position is where the error function was called. Level 2 points the error to
where the function that called error was called; and so on.

o G

A global variable (not a function) that holds the global environment (that is, _G._G = _G). Lua
itself does not use this variable; changing its value does not affect any environment. (Use setfenv
to change environments.)

e getfenv (f)

Returns the current environment in use by the function. f can be a Lua function or a number,
which specifies the function at that stack level: Level 1 is the function calling getfenv. If the given
function is not a Lua function, or if f is 0, getfenv returns the global environment. The default
for £ is 1.

If the environment has a "__fenv" field, returns the associated value, instead of the environ-
ment.

39

e getmetatable (object)

If the object does not have a metatable, returns nil. Otherwise, if the object’s metatable has a
"__metatable" field, returns the associated value. Otherwise, returns the metatable of the given

object.

e gcinfo (O

Returns two results: the number of Kbytes of dynamic memory that Lua is using and the current
garbage collector threshold (also in Kbytes).

e ipairs (t)

Returns an iterator function, the table t, and 0, so that the construction

for i,v in ipairs(t) do ... end
will iterate over the pairs (1,t[1]), (2,t[2]), ..., up to the first integer key with a nil value in
the table.

e loadfile (filename)

Loads a file as a Lua chunk (without running it). If there are no errors, returns the compiled chunk
as a function; otherwise, returns nil plus the error message. The environment of the returned
function is the global environment.

e loadlib (libname, funcname)

Links the program with the dynamic C library 1ibname. Inside this library, looks for a function
funcname and returns this function as a C function.

libname must be the complete file name of the C library, including any eventual path and
extension.

This function is not supported by ANSI C. As such, it is only available on some platforms
(Windows, Linux, Solaris, BSD, plus other Unix systems that support the d1fcn standard).

e loadstring (string [, chunkname])

Loads a string as a Lua chunk (without running it). If there are no errors, returns the compiled
chunk as a function; otherwise, returns nil plus the error message. The environment of the returned
function is the global environment.

The optional parameter chunkname is the name to be used in error messages and debug infor-
mation.

To load and run a given string, use the idiom

assert(loadstring(s)) O

40

e next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second argument
is an index in this table. next returns the next index of the table and the value associated with the
index. When called with nil as its second argument, next returns the first index of the table and
its associated value. When called with the last index, or with nil in an empty table, next returns
nil. If the second argument is absent, then it is interpreted as nil.

Lua has no declaration of fields; There is no difference between a field not present in a table
or a field with value nil. Therefore, next only considers fields with non-nil values. The order in
which the indices are enumerated is not specified, even for numeric indices. (To traverse a table in
numeric order, use a numerical for or the ipairs function.)

The behavior of next is undefined if, during the traversal, you assign any value to a non-existent
field in the table.

e pairs (t)

Returns the next function and the table t (plus a nil), so that the construction
for k,v in pairs(t) do ... end

will iterate over all key—value pairs of table t.

e pcall (f, argl, arg2, ...)

Calls function f with the given arguments in protected mode. That means that any error inside f
is not propagated; instead, pcall catches the error and returns a status code. Its first result is the
status code (a boolean), which is true if the call succeeds without errors. In such case, pcall also
returns all results from the call, after this first result. In case of any error, pcall returns false plus
the error message.

e print (el, e2, ...)

Receives any number of arguments, and prints their values in stdout, using the tostring function
to convert them to strings. This function is not intended for formatted output, but only as a quick
way to show a value, typically for debugging. For formatted output, use format (see §5.3).

e rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod. Returns a boolean.

e rawget (table, index)

Gets the real value of table[index], without invoking any metamethod. table must be a table;
index is any value different from nil.

e rawset (table, index, value)

Sets the real value of table[index] to value, without invoking any metamethod. table must be
a table, index is any value different from nil, and value is any Lua value.

41

e require (packagename)

Loads the given package. The function starts by looking into the table _LOADED to determine
whether packagename is already loaded. If it is, then require returns the value that the package
returned when it was first loaded. Otherwise, it searches a path looking for a file to load.

If the global variable LUA_PATH is a string, this string is the path. Otherwise, require tries the
environment variable LUA_PATH. As a last resort, it uses the predefined path "7;?7.1lua".

The path is a sequence of templates separated by semicolons. For each template, require will
change each interrogation mark in the template to packagename, and then will try to load the
resulting file name. So, for instance, if the path is

"./7.1lua;./?.1c;/usr/local/?/7.1lua;/lasttry"

a require "mod" will try to load the files ./mod.1lua, ./mod.lc, /usr/local/mod/mod.lua, and
/lasttry, in that order.

The function stops the search as soon as it can load a file, and then it runs the file. After that,
it associates, in table _LOADED, the package name with the value that the package returned, and
returns that value. If the package returns nil (or no value), require converts this value to true.
If the package returns false, require also returns false. However, as the mark in table _LOADED
is false, any new attempt to reload the file will happen as if the package was not loaded (that is,
the package will be loaded again).

If there is any error loading or running the file, or if it cannot find any file in the path, then
require signals an error.

While running a file, require defines the global variable _REQUIREDNAME with the package
name. The package being loaded always runs within the global environment.

e setfenv (f, table)

Sets the current environment to be used by the given function. f can be a Lua function or a

number, which specifies the function at that stack level: Level 1 is the function calling setfenv.
As a special case, when f is 0 setfenv changes the global environment of the running thread.
If the original environment has a "__fenv" field, setfenv raises an error.

e setmetatable (table, metatable)

Sets the metatable for the given table. (You cannot change the metatable of a userdata from Lua.)
If metatable is nil, removes the metatable of the given table. If the original metatable has a
"__metatable" field, raises an error.

e tonumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a string
convertible to a number, then tonumber returns that number; otherwise, it returns nil.

An optional argument specifies the base to interpret the numeral. The base may be any integer
between 2 and 36, inclusive. In bases above 10, the letter ‘A’ (in either upper or lower case)
represents 10, ‘B’ represents 11, and so forth, with ‘2’ representing 35. In base 10 (the default), the
number may have a decimal part, as well as an optional exponent part (see §2.2.1). In other bases,
only unsigned integers are accepted.

42

e tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format. For complete
control of how numbers are converted, use format (see §5.3).
If the metatable of e has a "__tostring" field, tostring calls the corresponding value with e

as argument, and uses the result of the call as its result.

e type (v)

Returns the type of its only argument, coded as a string. The possible results of this function
are "nil" (a string, not the value nil), "number", "string", "boolean, "table", "function",
"thread", and "userdata".

e unpack (list)

Returns all elements from the given list. This function is equivalent to
return list[1], 1list[2], ..., list[n]

except that the above code can be written only for a fixed n. The number n is the size of the list,
as defined for the table.getn function.

e _VERSION

A global variable (not a function) that holds a string containing the current interpreter version.
The current content of this string is "Lua 5.0".

e xpcall (f, err)

This function is similar to pcall, except that you can set a new error handler.

xpcall calls function £ in protected mode, using err as the error handler. Any error inside f
is not propagated; instead, xpcall catches the error, calls the err function with the original error
object, and returns a status code. Its first result is the status code (a boolean), which is true if the
call succeeds without errors. In such case, xpcall also returns all results from the call, after this
first result. In case of any error, xpcall returns false plus the result from err.

5.2 Coroutine Manipulation

The operations related to coroutines comprise a sub-library of the basic library and come inside
the table coroutine. See §2.10 for a general description of coroutines.

e coroutine.create (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns this new coroutine, an
object with type "thread".

43

e coroutine.resume (co, vall, ...)

Starts or continues the execution of coroutine co. The first time you resume a coroutine, it starts
running its body. The arguments vall, ... go as the arguments to the body function. If the
coroutine has yielded, resume restarts it; the arguments vall, ... go as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed to yield
(if the coroutine yields) or any values returned by the body function (if the coroutine terminates).
If there is any error, resume returns false plus the error message.

e coroutine.status (co)

Returns the status of coroutine co, as a string: "running", if the coroutine is running (that is,
it called status); "suspended", if the coroutine is suspended in a call to yield, or if it has not
started running yet; and "dead" if the coroutine has finished its body function, or if it has stopped
with an error.

e coroutine.wrap (f)

Creates a new coroutine, with body f. £ must be a Lua function. Returns a function that resumes
the coroutine each time it is called. Any arguments passed to the function behave as the extra
arguments to resume. Returns the same values returned by resume, except the first boolean. In
case of error, propagates the error.

e coroutine.yield (vall, ...)

Suspends the execution of the calling coroutine. The coroutine cannot be running neither a C
function, nor a metamethod, nor an iterator. Any arguments to yield go as extra results to
resume.

5.3 String Manipulation

This library provides generic functions for string manipulation, such as finding and extracting
substrings, and pattern matching. When indexing a string in Lua, the first character is at position 1
(not at 0, as in C). Indices are allowed to be negative and are interpreted as indexing backwards,
from the end of the string. Thus, the last character is at position —1, and so on.

The string library provides all its functions inside the table string.

e string.byte (s [, i])

Returns the internal numerical code of the i-th character of s, or nil if the index is out of range.
If 1 is absent, then it is assumed to be 1. i may be negative.
Note that numerical codes are not necessarily portable across platforms.

e string.char (i1, i2, ...)

Receives 0 or more integers. Returns a string with length equal to the number of arguments, in
which each character has the internal numerical code equal to its correspondent argument.
Note that numerical codes are not necessarily portable across platforms.

44

e string.dump (function)

Returns a binary representation of the given function, so that a later loadstring on that string
returns a copy of the function. function must be a Lua function without upvalues.

e string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds one, then find returns the indices of s
where this occurrence starts and ends; otherwise, it returns nil. If the pattern specifies captures
(see string.gsub below), the captured strings are returned as extra results. A third, optional
numerical argument init specifies where to start the search; its default value is 1 and may be
negative. A value of true as a fourth, optional argument plain turns off the pattern matching
facilities, so the function does a plain “find substring” operation, with no characters in pattern
being considered “magic”. Note that if plain is given, then init must be given too.

e string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are
counted, so "a\000b\000c" has length 5.

e string.lower (s)

Receives a string and returns a copy of that string with all uppercase letters changed to lowercase.
All other characters are left unchanged. The definition of what is an uppercase letter depends on
the current locale.

e string.rep (s, n)

Returns a string that is the concatenation of n copies of the string s.

e string.sub (s, i [, jI)

Returns the substring of s that starts at i and continues until j; i and j may be negative. If j is
absent, then it is assumed to be equal to —1 (which is the same as the string length). In particular,
the call string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns
a suffix of s with length 1.

e string.upper (s)

Receives a string and returns a copy of that string with all lowercase letters changed to uppercase.
All other characters are left unchanged. The definition of what is a lowercase letter depends on the
current locale.

e string.format (formatstring, el, e2, ...)

Returns a formatted version of its variable number of arguments following the description given in
its first argument (which must be a string). The format string follows the same rules as the printf
family of standard C functions. The only differences are that the options/modifiers *, 1, L, n, p,
and h are not supported, and there is an extra option, q. The q option formats a string in a form
suitable to be safely read back by the Lua interpreter: The string is written between double quotes,

45

and all double quotes, newlines, and backslashes in the string are correctly escaped when written.
For instance, the call

string.format(’%q’, ’a string with "quotes" and \n new line’)
will produce the string:

"a string with \"quotes\" and \
new line"

The options c, d, E, e, £, g, G, i, o, u, X, and x all expect a number as argument, whereas q
and s expect a string. The * modifier can be simulated by building the appropriate format string.
For example, "%*g" can be simulated with "%"..width.."g".

String values to be formatted with %s cannot contain embedded zeros.

e string.gfind (s, pat)

Returns an iterator function that, each time it is called, returns the next captures from pattern
pat over string s.

If pat specifies no captures, then the whole match is produced in each call.

As an example, the following loop

s = "hello world from Lua"

for w in string.gfind(s, "%a+") do
print (w)

end

will iterate over all the words from string s, printing one per line. The next example collects all
pairs key=value from the given string into a table:

t ={}

s = "from=world, to=Lua"

for k, v in string.gfind(s, "(%w+)=(%w+)") do
t[k] = v

end

e string.gsub (s, pat, repl [, n])

Returns a copy of s in which all occurrences of the pattern pat have been replaced by a replacement
string specified by repl. gsub also returns, as a second value, the total number of substitutions
made.

If repl is a string, then its value is used for replacement. Any sequence in repl of the form %n,
with n between 1 and 9, stands for the value of the n-th captured substring (see below).

If repl is a function, then this function is called every time a match occurs, with all captured
substrings passed as arguments, in order; if the pattern specifies no captures, then the whole match
is passed as a sole argument. If the value returned by this function is a string, then it is used as
the replacement string; otherwise, the replacement string is the empty string.

The optional last parameter n limits the maximum number of substitutions to occur. For
instance, when n is 1 only the first occurrence of pat is replaced.

Here are some examples:

46

-—>

string.gsub("hello world", "(%w+)", "%1 %1")

> x="hello hello world world"

string.gsub("hello world", "(%w+)", "%1 %1", 1)
x="hello hello world"

string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")

> x="world hello Lua from"

string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
x="home = /home/roberto, user = roberto"

string.gsub("4+5 = $return 4+5%", "%$(.-)%$", function (s)
return loadstring(s) ()

end)

x="4+5 = 9"

local t = {name="lua", version="5.0"}

X =

-—>

string.gsub("$name_$version.tar.gz", "%$(%w+)", function (v)
return t[v]

end)

x="lua_5.0.tar.gz"

Patterns

Character Class: A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

x (where z is not one of the magic characters ~$()%. [1*+-7) — represents the character z

itself.

. — (a dot) represents all characters.

ha
he
hd
hl
%p
%s
yAl
Tow
hx
hz

hx

— represents all letters.

— represents all control characters.

— represents all digits.

— represents all lowercase letters.

— represents all punctuation characters.

— represents all space characters.

— represents all uppercase letters.

— represents all alphanumeric characters.

— represents all hexadecimal digits.

— represents the character with representation 0.

(where z is any non-alphanumeric character) — represents the character z. This is the
standard way to escape the magic characters. Any punctuation character (even the non
magic) can be preceded by a ‘%" when used to represent itself in a pattern.

47

[set] — represents the class which is the union of all characters in set. A range of characters
may be specified by separating the end characters of the range with a ‘-’. All classes
%z described above may also be used as components in set. All other characters in set
represent themselves. For example, [%w_] (or [_%w]) represents all alphanumeric char-
acters plus the underscore, [0-7] represents the octal digits, and [0-7%1%-] represents
the octal digits plus the lowercase letters plus the ‘-’ character.

The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z]
or [a-%%] have no meaning.

["set] — represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter repre-
sents the complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current locale. In
particular, the class [a-z] may not be equivalent to %1. The second form should be preferred for
portability.

Pattern Item: A pattern item may be

e a single character class, which matches any single character in the class;

a single character class followed by ‘*’, which matches 0 or more repetitions of characters in
the class. These repetition items will always match the longest possible sequence;

e a single character class followed by ‘+’, which matches 1 or more repetitions of characters in
the class. These repetition items will always match the longest possible sequence;

e a single character class followed by ‘-’, which also matches 0 or more repetitions of characters
in the class. Unlike ‘*’, these repetition items will always match the shortest possible sequence;

e a single character class followed by ‘?’, which matches 0 or 1 occurrence of a character in the
class;

e n, for n between 1 and 9; such item matches a substring equal to the n-th captured string
(see below);

e bzy, where x and y are two distinct characters; such item matches strings that start with «,
end with y, and where the z and y are balanced. This means that, if one reads the string
from left to right, counting +1 for an z and —1 for a y, the ending ¥ is the first y where the
count reaches 0. For instance, the item %b() matches expressions with balanced parentheses.

Pattern: A pattern is a sequence of pattern items. A ‘~’ at the beginning of a pattern anchors
the match at the beginning of the subject string. A ‘$’ at the end of a pattern anchors the match at
the end of the subject string. At other positions, ‘~’ and ‘¢’ have no special meaning and represent
themselves.

Captures: A pattern may contain sub-patterns enclosed in parentheses; they describe captures.
When a match succeeds, the substrings of the subject string that match captures are stored (cap-
tured) for future use. Captures are numbered according to their left parentheses. For instance, in
the pattern " (ax(.)%w(%s*))", the part of the string matching "a*(.)%w(%s*)" is stored as the
first capture (and therefore has number 1); the character matching . is captured with number 2,
and the part matching %s* has number 3.

48

As a special case, the empty capture () captures the current string position (a number). For
instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3
and 5.

A pattern cannot contain embedded zeros. Use %z instead.

5.4 Table Manipulation

This library provides generic functions for table manipulation. It provides all its functions inside
the table table.

Most functions in the table library assume that the table represents an array or a list. For those
functions, an important concept is the size of the array. There are three ways to specify that size:

e the field "n" — When the table has a field "n" with a numerical value, that value is assumed
as its size.

e setn — You can call the table.setn function to explicitly set the size of a table.

e implicit size — Otherwise, the size of the object is one less the first integer index with a nil

value.

For more details, see the descriptions of the table.getn and table.setn functions.

e table.concat (table [, sep [, i [, j111)

Returns table[i]..sep..table[i+1] ... sep..table[j]l. The default value for sep is the
empty string, the default for i is 1, and the default for j is the size of the table. If i is greater
than j, returns the empty string.

e table.foreach (table, f)

Executes the given f over all elements of table. For each element, f is called with the index and
respective value as arguments. If £ returns a non-nil value, then the loop is broken, and this value
is returned as the final value of foreach.

See the next function for extra information about table traversals.

e table.foreachi (table, f)

Executes the given f over the numerical indices of table. For each index, f is called with the index
and respective value as arguments. Indices are visited in sequential order, from 1 to n, where n is
the size of the table (see §5.4). If £ returns a non-nil value, then the loop is broken and this value
is returned as the result of foreachi.

e table.getn (table)

Returns the size of a table, when seen as a list. If the table has an n field with a numeric value,
this value is the size of the table. Otherwise, if there was a previous call to table.setn over this
table, the respective value is returned. Otherwise, the size is one less the first integer index with a
nil value.

49

e table.sort (table [, comp]l)

Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the size of
the table (see §5.4). If comp is given, then it must be a function that receives two table elements,
and returns true when the first is less than the second (so that not comp(ali+1],al[i]l) will be
true after the sort). If comp is not given, then the standard Lua operator < is used instead.

The sort algorithm is not stable, that is, elements considered equal by the given order may have
their relative positions changed by the sort.

e table.insert (table, [pos,] value)

Inserts element value at position pos in table, shifting up other elements to open space, if nec-
essary. The default value for pos is n+1, where n is the size of the table (see §5.4), so that a call
table.insert(t,x) inserts x at the end of table t. This function also updates the size of the table
by calling table.setn(table, n+1).

e table.remove (table [, pos])

Removes from table the element at position pos, shifting down other elements to close the space,
if necessary. Returns the value of the removed element. The default value for pos is n, where n is
the size of the table (see §5.4), so that a call table.remove(t) removes the last element of table
t. This function also updates the size of the table by calling table.setn(table, n-1).

e table.setn (table, n)

Updates the size of a table. If the table has a field "n" with a numerical value, that value
is changed to the given n. Otherwise, it updates an internal state so that subsequent calls to
table.getn(table) return n.

5.5 Mathematical Functions

This library is an interface to most of the functions of the standard C math library. (Some have
slightly different names.) It provides all its functions inside the table math. In addition, it registers
the global __pow for the binary exponentiation operator ~, so that x"y returns z¥. The library
provides the following functions:

math.abs math.acos math.asin math.atan math.atan2
math.ceil math.cos math.deg math.exp math.floor
math.log math.logl0 math.max math.min math.mod
math.pow math.rad math.sin math.sqrt math.tan

math.frexp math.ldexp math.random math.randomseed

plus a variable math.pi. Most of them are only interfaces to the corresponding functions in the
C library. All trigonometric functions work in radians (previous versions of Lua used degrees). The
functions math.deg and math.rad convert between radians and degrees.

The function math.max returns the maximum value of its numeric arguments. Similarly,
math.min computes the minimum. Both can be used with 1, 2, or more arguments.

The functions math.random and math.randomseed are interfaces to the simple random genera-
tor functions rand and srand that are provided by ANSI C. (No guarantees can be given for their
statistical properties.) When called without arguments, math.random returns a pseudo-random

50

real number in the range [0,1). When called with a number n, math.random returns a pseudo-
random integer in the range [1,n]. When called with two arguments, | and u, math.random returns
a pseudo-random integer in the range [/, u]. The math.randomseed function sets a “seed” for the
pseudo-random generator: Equal seeds produce equal sequences of numbers.

5.6 Input and Output Facilities

The I/0O library provides two different styles for file manipulation. The first one uses implicit file
descriptors, that is, there are operations to set a default input file and a default output file, and all
input /output operations are over those default files. The second style uses explicit file descriptors.

When using implicit file descriptors, all operations are supplied by table io. When using explicit
file descriptors, the operation io.open returns a file descriptor and then all operations are supplied
as methods by the file descriptor.

The table io also provides three predefined file descriptors with their usual meanings from C:
io.stdin, io.stdout, and io.stderr.

A file handle is a userdata containing the file stream (FILE#*), with a distinctive metatable
created by the I/0 library.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a
second result) and some value different from nil on success.

e io.close ([file])

Equivalent to file:close(). Without a file, closes the default output file.

e io.flush ()

Equivalent to file:flush over the default output file.

e io.input ([filel)

When called with a file name, it opens the named file (in text mode), and sets its handle as the
default input file. When called with a file handle, it simply sets that file handle as the default input
file. When called without parameters, it returns the current default input file.

In case of errors this function raises the error, instead of returning an error code.

e io.lines ([filename])

Opens the given file name in read mode and returns an iterator function that, each time it is called,
returns a new line from the file. Therefore, the construction

for line in io.lines(filename) do ... end

will iterate over all lines of the file. When the iterator function detects the end of file, it returns
nil (to finish the loop) and automatically closes the file.

The call io.1lines() (without a file name) is equivalent to io.input () :lines(), that is, it
iterates over the lines of the default input file.

51

e io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new file handle,
or, in case of errors, nil plus an error message.
The mode string can be any of the following:

“r” read mode (the default);

“w” write mode;

1%

a” append mode;

“r+” update mode, all previous data is preserved;
“w—+” update mode, all previous data is erased;

“a4+” append update mode, previous data is preserved, writing is only allowed at the end of
file.

The mode string may also have a b at the end, which is needed in some systems to open the file in
binary mode. This string is exactly what is used in the standard C function fopen.
e io.output ([file])

Similar to io.input, but operates over the default output file.

e io.read (formatl, ...)

Equivalent to io.input () :read.

e io.tmpfile ()

Returns a handle for a temporary file. This file is open in update mode and it is automatically
removed when the program ends.

e io.type (obj)

Checks whether obj is a valid file handle. Returns the string "file" if obj is an open file handle,
"closed file" if obj is a closed file handle, and nil if obj is not a file handle.

e io.write (valuel, ...)

Equivalent to io.output() :write.

e file:close ()

Closes file.

e file:flush ()

Saves any written data to file.

52

e file:lines ()

Returns an iterator function that, each time it is called, returns a new line from the file. Therefore,
the construction

for line in file:lines() do ... end

will iterate over all lines of the file. (Unlike io.lines, this function does not close the file when
the loop ends.)

e file:read (formatl, ...)

Reads the file file, according to the given formats, which specify what to read. For each format,
the function returns a string (or a number) with the characters read, or nil if it cannot read data
with the specified format. When called without formats, it uses a default format that reads the
entire next line (see below).

The available formats are

“*n” reads a number; this is the only format that returns a number instead of a string.

“*a” reads the whole file, starting at the current position. On end of file, it returns the empty
string.

“*]” reads the next line (skipping the end of line), returning nil on end of file. This is the
default format.

number reads a string with up to that number of characters, returning nil on end of file. If
number is zero, it reads nothing and returns an empty string, or nil on end of file.

e file:seek ([whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the position given by
offset plus a base specified by the string whence, as follows:

“set” base is position 0 (beginning of the file);

“cur” base is current position;

“end” base is end of file;

In case of success, function seek returns the final file position, measured in bytes from the beginning
of the file. If this function fails, it returns nil, plus a string describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call file:seek()
returns the current file position, without changing it; the call file:seek("set") sets the position
to the beginning of the file (and returns 0); and the call file:seek("end") sets the position to
the end of the file, and returns its size.

e file:write (valuel, ...)

Writes the value of each of its arguments to the filehandle file. The arguments must be strings
or numbers. To write other values, use tostring or string.format before write.

5.7 Operating System Facilities
This library is implemented through table os.

93

e os.clock ()

Returns an approximation of the amount of CPU time used by the program, in seconds.

e os.date ([format [, timell)

Returns a string or a table containing date and time, formatted according to the given string
format.

If the time argument is present, this is the time to be formatted (see the os.time function for
a description of this value). Otherwise, date formats the current time.

If format starts with ‘!’, then the date is formatted in Coordinated Universal Time. After that
optional character, if format is *t, then date returns a table with the following fields: year (four
digits), month (1-12), day (1-31), hour (0-23), min (0-59), sec (0-61), wday (weekday, Sunday
is 1), yday (day of the year), and isdst (daylight saving flag, a boolean).

If format is not *t, then date returns the date as a string, formatted according with the same
rules as the C function strftime.

When called without arguments, date returns a reasonable date and time representation that de-
pends on the host system and on the current locale (that is, os.date () is equivalent to os.date ("%c")).

e os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In Posix, Windows, and some other
systems, this value is exactly t2—t1.

e os.execute (command)

This function is equivalent to the C function system. It passes command to be executed by an
operating system shell. It returns a status code, which is system-dependent.

e os.exit ([code])

Calls the C function exit, with an optional code, to terminate the host program. The default
value for code is the success code.

e os.getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not defined.

e os.remove (filename)

Deletes the file with the given name. If this function fails, it returns nil, plus a string describing
the error.

e os.rename (oldname, newname)

Renames file named oldname to newname. If this function fails, it returns nil, plus a string describing
the error.

o4

e os.setlocale (locale [, categoryl)

Sets the current locale of the program. locale is a string specifying a locale; category is an
optional string describing which category to change: "all", "collate", "ctype", "monetary",
"numeric", or "time"; the default category is "all". The function returns the name of the new
locale, or nil if the request cannot be honored.

e os.time ([table])

Returns the current time when called without arguments, or a time representing the date and time
specified by the given table. This table must have fields year, month, and day, and may have fields
hour, min, sec, and isdst (for a description of these fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In Posix, Windows,
and some other systems, this number counts the number of seconds since some given start time
(the “epoch”). In other systems, the meaning is not specified, and the number returned by time
can be used only as an argument to date and difftime.

e os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must be explicitly
opened before its use and removed when no longer needed.

This function is equivalent to the tmpnam C function, and many people (and even some compil-
ers!) advise against its use, because between the time you call this function and the time you open
the file, it is possible for another process to create a file with the same name.

5.8 The Reflexive Debug Interface

The debug library provides the functionality of the debug interface to Lua programs. You should
exert care when using this library. The functions provided here should be used exclusively for
debugging and similar tasks, such as profiling. Please resist the temptation to use them as a usual
programming tool: They can be very slow. Moreover, setlocal and getlocal violate the privacy
of local variables and therefore can compromise some otherwise secure code.

All functions in this library are provided inside a debug table.

e debug.debug ()

Enters an interactive mode with the user, running each string that the user enters. Using simple
commands and other debug facilities, the user can inspect global and local variables, change their
values, evaluate expressions, and so on. A line containing only the word cont finishes this function,
so that the caller continues its execution.

Note that commands for debug.debug are not lexically nested with any function, so they have
no direct access to local variables.

e debug.gethook ()

Returns the current hook settings, as three values: the current hook function, the current hook
mask, and the current hook count (as set by the debug.sethook function).

95

e debug.getinfo (function [, what])

This function returns a table with information about a function. You can give the function directly,
or you can give a number as the value of function, which means the function running at level
function of the call stack: Level 0 is the current function (getinfo itself); level 1 is the function
that called getinfo; and so on. If function is a number larger than the number of active functions,
then getinfo returns nil.

The returned table contains all the fields returned by lua_getinfo, with the string what de-
scribing which fields to fill in. The default for what is to get all information available. If present,
the option ‘f’ adds a field named func with the function itself.

For instance, the expression debug.getinfo(1,"n") .name returns the name of the current
function, if a reasonable name can be found, and debug.getinfo(print) returns a table with all
available information about the print function.

e debug.getlocal (level, local)

This function returns the name and the value of the local variable with index local of the function
at level level of the stack. (The first parameter or local variable has index 1, and so on, until
the last active local variable.) The function returns nil if there is no local variable with the given
index, and raises an error when called with a level out of range. (You can call debug.getinfo to
check whether the level is valid.)

e debug.getupvalue (func, up)

This function returns the name and the value of the upvalue with index up of the function func.
The function returns nil if there is no upvalue with the given index.

e debug.setlocal (level, local, value)

This function assigns the value value to the local variable with index local of the function at level
level of the stack. The function returns nil if there is no local variable with the given index, and
raises an error when called with a level out of range. (You can call getinfo to check whether the
level is valid.)

e debug.setupvalue (func, up, value)

This function assigns the value value to the upvalue with index up of the function func. The
function returns nil if there is no upvalue with the given index.

e debug.sethook (hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe when the hook
will be called. The string mask may have the following characters, with the given meaning:

"c¢" The hook is called every time Lua calls a function;
"r" The hook is called every time Lua returns from a function;

"1" The hook is called every time Lua enters a new line of code.

o6

With a count different from zero, the hook is called after every count instructions.

When called without arguments, the debug.sethook function turns off the hook.

When the hook is called, its first parameter is always a string describing the event that triggered
its call: "call", "return" (or "tail return"), "line", and "count". Moreover, for line events,
it also gets as its second parameter the new line number. Inside a hook, you can call getinfo
with level 2 to get more information about the running function (level 0 is the getinfo function,
and level 1 is the hook function), unless the event is "tail return". In this case, Lua is only
simulating the return, and a call to getinfo will return invalid data.

e debug.traceback ([messagel)

Returns a string with a traceback of the call stack. An optional message string is appended at the
beginning of the traceback. This function is typically used with xpcall to produce better error
messages.

6 Lua Stand-alone

Although Lua has been designed as an extension language, to be embedded in a host C program, it
is also frequently used as a stand-alone language. An interpreter for Lua as a stand-alone language,
called simply 1lua, is provided with the standard distribution. The stand-alone interpreter includes
all standard libraries plus the reflexive debug interface. Its usage is:

lua [options] [script [args]]
The options are:

- executes stdin as a file;

-e stat executes string stat;

-1 file “requires” file;

-i enters interactive mode after running script;
-v prints version information;

-- stop handling options.

After handling its options, lua runs the given script, passing to it the given args. When called
without arguments, lua behaves as lua -v -i when stdin is a terminal, and as lua - otherwise.
Before running any argument, the interpreter checks for an environment variable LUA_INIT. If
its format is @filename, then lua executes the file. Otherwise, lua executes the string itself.
All options are handled in order, except —i. For instance, an invocation like

$ lua -e’a=1’ -e ’print(a)’ script.lua

will first set a to 1, then print a, and finally run the file script.lua. (Here, $ is the shell prompt.
Your prompt may be different.)

Before starting to run the script, lua collects all arguments in the command line in a global
table called arg. The script name is stored in index 0, the first argument after the script name
goes to index 1, and so on. The field n gets the number of arguments after the script name. Any
arguments before the script name (that is, the interpreter name plus the options) go to negative
indices. For instance, in the call

57

$ lua -la.lua b.lua t1 t2

the interpreter first runs the file a.lua, then creates a table

arg = { [-2] = "lua", [-1] = "-la.lua", [0] = "b.lua",
[1] = "t1", [2] = "t2"; n = 2 }

and finally runs the file b. lua.

In interactive mode, if you write an incomplete statement, the interpreter waits for its comple-
tion.

If the global variable _PROMPT is defined as a string, then its value is used as the prompt.
Therefore, the prompt can be changed directly on the command line:

$ lua —e"_PROMPT=meprompt> 4

(the outer pair of quotes is for the shell, the inner is for Lua), or in any Lua programs by assigning
to _PROMPT. Note the use of =i to enter interactive mode; otherwise, the program would end just
after the assignment to _PROMPT.

In Unix systems, Lua scripts can be made into executable programs by using chmod +x and
the #! form, as in

#!/usr/local/bin/lua

(Of course, the location of the Lua interpreter may be different in your machine. If lua is in your
PATH, then

#!/usr/bin/env lua

is a more portable solution.)

Acknowledgments

The Lua team is grateful to Tecgraf for its continued support to Lua. We thank everyone at Tecgraf,
specially the head of the group, Marcelo Gattass. At the risk of omitting several names, we also
thank the following individuals for supporting, contributing to, and spreading the word about Lua:
Alan Watson. André Clinio, André Costa, Antonio Scuri, Asko Kauppi, Bret Mogilefsky, Cameron
Laird, Carlos Cassino, Carlos Henrique Levy, Claudio Terra, David Jeske, Ed Ferguson, Edgar
Toernig, Erik Hougaard, Jim Mathies, John Belmonte, John Passaniti, John Roll, Jon Erickson,
Jon Kleiser, Mark Ian Barlow, Nick Trout, Noemi Rodriguez, Norman Ramsey, Philippe Lhoste,
Renata Ratton, Renato Borges, Renato Cerqueira, Reuben Thomas, Stephan Herrmann, Steve
Dekorte, Thatcher Ulrich, Toméas Gorham, Vincent Penquerc’h. Thank you!

Incompatibilities with Previous Versions

Lua 5.0 is a major release. There are several incompatibilities with its previous version, Lua 4.0.

o8

Incompatibilities with version 4.0
Changes in the Language

e The whole tag-method scheme was replaced by metatables.
e Function calls written between parentheses result in exactly one value.

e A function call as the last expression in a list constructor (like {a,b,f()}) has all its return
values inserted in the list.

e The precedence of or is smaller than the precedence of and.
e in, false, and true are reserved words.

e The old construction for k,v in t, where t is a table, is deprecated (although it is still
supported). Use for k,v in pairs(t) instead.

e When a literal string of the form [[...]] starts with a newline, this newline is ignored.

e Upvalues in the form %var are obsolete; use external local variables instead.

Changes in the Libraries

e Most library functions now are defined inside tables. There is a compatibility script (compat . lua)
that redefine most of them as global names.

e In the math library, angles are expressed in radians. With the compatibility script (compat.lua),
functions still work in degrees.

e The call function is deprecated. Use f (unpack(tab)) instead of call(f, tab) for unpro-
tected calls, or the new pcall function for protected calls.

e dofile do not handle errors, but simply propagates them.
e dostring is deprecated. Use loadstring instead.
e The read option *w is obsolete.

e The format option %n$ is obsolete.

Changes in the API

e lua_open does not have a stack size as its argument (stacks are dynamic).

e lua_pushuserdata is deprecated. Use lua_newuserdata or lua_pushlightuserdata in-
stead.

99

The Complete Syntax of Lua

chunk — {stat[‘;’]}
block — chunk
stat — warlistl ‘=" explist1
functioncall

do block end

while exp do block end

repeat block until exp

if exp then block { elseif exp then block} [else block | end
return [explist! |
break

for Name ‘=" exp °,
for Name {‘,’ Name } in ezplist! do block end
function funcname funcbody

local function Name funcbody

local namelist [init |

9 [T

exp [, exp | do block end

|
|
|
|
|
|
|
|
|
|
\
|
funcname — Name { ‘.’ Name} [‘:’ Name]
varlistl — war {*‘,” var}
var — Name | prefizezp ‘[’ exp ‘1’ | prefizexp ‘.’ Name
namelist — Name {‘,’ Name }
it — ‘=7 explistl
explistl — {exp‘,”} exp
erp — nil | false | true | Number | Literal
| function | prefizexp | tableconstructor | exp binop exp | unop exp
prefizerp — wvar | functioncall | ‘¢ exp)’
functioncall — prefizezp args | prefivexp ‘:’ Name args
args — ‘C [explistl] *)’ | tableconstructor | Literal
function — function funcbody
funcbody — “C [parlistl])’ block end
parlist] — Name {‘,” Name } [, ...7] | “...°
tableconstructor — {’ [fieldlist] ‘}’
fieldlist — field { fieldsep field} | fieldsep |
field — ‘[exp ‘]’ ‘=" exp | name ‘=" exp | exp
fieldsep — 7| ‘5
bllnop — (+7|‘_"(*7’C/7|L*7|4‘.’
| e [e e |
| and|or
unop — ‘=’ | not

60

G e 39
LOADED .o 42
PROMPT ... 98
_REQUIREDNAME it 42
_VERSION ..o e 43
A
acceptable index 23
“add” event il 15
adjustment il 5
and ... 9
AT i 13
arguments 13
arithmetic operators 8
AITAYS « et ttie ettt 3
ASSETt ot 39
assignment o ool)
associative arrays oot 3
B
basic types ... 3
block ... 5
boolean i 3
break statementl 6
C
CAPI .. 22
Chunkreader 28
luacall ..., 30
lua CFunction 32
lua_checkstack 23
1ua CloSEe ..ttt 22
lua concatcoooiiiiiiiin. 27
lua cpcallooiiiiiiiia... 34
luaDebugccoviiiiiiiiiiiinn. 35
luaequalcciiiiiiiiiiiian 25
LUAERRERR, 31
LUA_ERRMEM 28, 31
1Uua erToT .ot 34
LUAERRRUN ..., 31
LUA_ERRSYNTAX ...t 28
lua_getfenv 30
lua_getgccount 27
lua_getgcthreshold 27

61

lua_gethook 38
lua_gethookcount 38
lua_gethookmask 38
lua_getinfooll 35
lua_getlocal 36
lua_getmetatable 28
lua_getstack 35
lua_gettable 29
luagettopooiiiiiiil 23
lua_getupvalue 36
LUA_GLOBALSINDEX 30
lua Hookcooiiiiiiiiiinn... 37
LUA_HOOKCALLooiiiiinin, 37
LUA_HOOKCOUNT ...t 37
LUA_HOOKLINE ...t 37
LUA_HOOKRETo 37
LUA_HOOKTAILRET 37
lua insertccooiiiiiiiiiinan. 24
lua_isboolean 24
lua_iscfunction 24
lua_ isfunction 24
lua_islightuserdata 24
lua isnil ..o, 24
lua_isnumber 24
lua isstringccovvviieeeennnn. 24
lua_istable 24
lua_isuserdata 24
lua_lessthan 25
lualoadoooiiiiiiiiL. 28
LUAMASKCALL, 37
LUA_MASKCOUNT ..., 37
LUAMASKLINEot 37
LUAMASKRET 37
LUAMINSTACKooviiiiiinn. 23
LUAMULTRET 30
luamnewtable 29
lua newthread 34
lua newuserdata 27
luamnextooiiiiiiii.. 29
lua Number 25
luaopencooiiiiiiiiiii.. 22
LUA POP «etetii e 24
lua_pushboolean 26
lua_pushcclosure 33

lua_pushcfunction 26
lua_pushfstring 26
lua_pushlightuserdata 26
lua pushlstring 26
lua pushnilcciiiinnnnn, 26
lua_pushnumber 26
lua pushstring 26
lua pushvaluecovvnnn. 24
lua_pushvfstring 26
luarawequal 25
luarawget 29
lua_rawgeti 30
luarawset 29
luarawseticooiiiiiiiiinn, 30
lua_register 32
LUA_REGISTRYINDEX 33
luaremove, 24
lua_replaceccovviiueieinnn. 24
luaresumeo.alL 34
lua_setfenv 30
lua_setgcthreshold 27
lua_sethook, 37
lua_setlocal 36
lua_setmetatable 28
lua_settable 29
lua Settop ...vvvviiiiiiii 24
lua_setupvalue 36
luaStateccoiiiiiiiiiiii 22
luastrlen 25
lua_tobooleancoovuuuunnn 25
lua_tocfunction 25
lua_tonumber 25
lua_topointercounn 25
lua_tostring 25
lua_tothread 25
lua_touserdata 25
lua_typeooiiiiiiiiiiL 24
lua_typename 25
lua_upvalueindex 33
lua_xmoveciiiiii... 34
lua_yieldl 34
luaopen.baseo.anL. 38
luaopen.debugccoiiiiiiin. 38
luaopen_io 38
luaopenmath 38
luaopen string 38
luaopen_tablecoiiin. 38

62

Cclosure ... 33

“call” event 19
captures ...t 48
character class 47
chunk 5)
collectgarbage 39
COMMENES ..ottt ittt 3
concatenationo ... 10
“concatenation” event 17
condition expression 6
constructors il 10
coroutinel 43
coroutine.create 21, 43
coroutine.resume 21, 44
coroutine.status 44
coroutine.wrapc....... 21, 44
coroutine.yield 21, 44
D

debug i 95
debug.debugooL 55
debug.gethook 55
debug.getinfo o6
debug.getlocal o6
debug.getupvalue 56
debug.sethookn 56
debug.setlocal o6
debug.setupvalue 56
debug.traceback o7
“div’ event ... 16
dofile ..o 39
E

eight-bit clean 3
environment tables 4
“eq” event ... 17
BTTOL o ettt ettt 39
EVENES ..o 15
exponentiationoooiia.. 9
EXPIESSIONS .. v vttt 8
F

file:close ...t 52
file:flush L. 52
file:lines 53
filetreadccoiiiiiiiiii 53
filetseek i, 53
file:write i 53

finalizers it 20
for statement L 6
full userdata ool 27
function i 3
function call L 11
function definitions 12
G
garbage collector, 20
geinfo ... 40
getfenv ...l 39
getmetatablel 40
Jou2c00 0 B80T 5 U 60
= 11, 60
binop ... 60
block ... 5, 60
chunkl 5, 60
EXD et 8, 60
explistl ... 5, 60
field ... 10, 60
fieldlist ...l 10, 60
fieldsep ... 10, 60
funcbodyol 12, 60
funcname, 12, 60
functionol 12, 60
functioncall 11, 60
NIt .o 60
namelist L. 8, 60
parlistl il 13, 60
prefixexp ... 8, 60
stat ... 5-8, 12, 60
tableconstructor 10, 60
L0 1T0) o T 60
VAL« ottt 4, 60
varlistlo 5, 60
I
identifiersl 1
if-then-else statement 6
“index” event 18, 19
10 51
i0.close ... ol
io.flush 51
io.input ...l 51
10.11ineS i 51
io.open ...l 51, 52
io.outputl 52
io.read ... 52

63

io.stderr ... 51
io.stdin ... 51
io.stdout il 51
io.tmpfile ... 52
io.type . 02
io.write ... 52
ipairs ... 40
iterators 7
K
keywords
ANd ... 9
breakcoiiiiiiiii 6
Ao i 5
€lSe . 6
elseif 6
false ... 8
for ... 6
function 12
s 6
S PP 6
local ... 8
nil . 8
N0t ot 9
o3 9
repeat il 6
TETUTD ..ot e 6
TLUC oottt 8
until ... 6
while 6
keywords 1
L
lexical scoping L. 14
light userdata 27
literal strings, 2
loadfile ... 40
loadlib ... 40
loadstringcooiiiiiiiii.. 40
local variables 4,8
logical operators 9
“Ievent ... 18
lua stand-alone 57
LUA_INIT ... 57
LUAPATH ... i 42
JUAC « et 9, 28

math 50 NeXt .. 41
Math.abs ..ot 50 nil 3
math ACOS e 50 IlOt 9
MAtH . ASI0 oo oeeeeeee e 50 number ... 3
math.atan 50 numerical constants 3
math.atan2 n... 50 O
math.ceil i 50
operator precedence 10
math.cos ... 50
OF ettt e e e 9
math.def 50 os 53
math.exp ... 50 08.CloCk ... 54
math.floor 50 os.date ... 54
math.frexpo 50 0s.difftimeooiiiiiiiii. 54
math.ldexpoiill 50 0S.€XECULE « ottt 54
math.logiil 50 0S.€XIt .ttt 54
math.loglO il 50 0S.getenv ...l o4
math.maxccoiiinnnnnnn.. 50 OS.TEMOVE . ovvteteetetee e e 54
math.min i, 50 OS.TENAME . ..eeetunaneeeeennaaneeann o4
math.mod 50 os.setlocalel 55
Math.pi ..ooviie e 50 os.timel 55
math.pow il 50 0S.tmpnameooiiiiin, 55
math.rad i 50 P
math.random, 50 .
pairs ... 41
math.randomseed 50 . .
panic function oL 33
math.sin i 50
pattern 48
MAth.SQrL ..o 50 pattern item 48
mathtan 50 pcall ““““““““““““““““““““ 41
metamethod “POW” EVENE .« ..vviit e 16
add ... 15 pre-compilation 5
call ... 19 print ... 41
concatenation 17 proper tail calls 12
div oo 16 pseudo-indices oo 23
B0 et 17
index ..o, 18, 19 R
W 18 rawequall 41
mul 16 Tawget ... 41
TAWSEL oot 41
POW ottt 16
TECOTAS .\ttt 3
SUD o 16 .
relational operators 9
LU0 010 16 .
repeat-until statement 6
metamethod 15 .
require ... 42
metamethods 15
reserved wordso i 1
metatable 15 return statement 6
methods 13
“mul” event 16 S
multiple assignment, 5 self . 13

64

setfenv 42
setmetatable i 42
short-cut evaluation 9
stack indexl 23
state ... 22
statements oL 4
SEring ... 3
SEtring ... 44
string.byte il 44
string.char oL 44
string.dumpol 45
string.findol 45
string.format 45
string.gsub ool 46
string.lenl 45
string.lower il 45
string.repot 45
string.subl 45
string.uppero il 45
“sub” event ...l 16
T

table 3
table ... 49
table.concat o .l 49
table.foreach, 49
table.foreachi 49
table.getnl 49
table.insert i, 50
table.removeol 50
table.setn i, 50
table.sOrt i 50
tail call ... 12
thread ... 3
tOKens ... 2
tonumber ... 42
tostring ...l 43
TYPE 43
U

“unm” event ... 16
unpack ... 43
upvalue ... 14
userdata ... 3
\%

valid index ... 23
values and types it 3

65

vararg functionol 13

version 4.0 ... 59
visibility ... 14
W

weak references i 20
weak table 20
while-do statement 6
X

xpcall ...l 43

	Introduction
	The Language
	Lexical Conventions
	Values and Types
	Coercion

	Variables
	Statements
	Chunks
	Blocks
	Assignment
	Control Structures
	For Statement
	Function Calls as Statements
	Local Declarations

	Expressions
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Concatenation
	Precedence
	Table Constructors
	Function Calls
	Function Definitions

	Visibility Rules
	Error Handling
	Metatables
	Garbage Collection
	Garbage-Collection Metamethods
	Weak Tables

	Coroutines

	The Application Program Interface
	States
	The Stack and Indices
	Stack Manipulation
	Querying the Stack
	Getting Values from the Stack
	Pushing Values onto the Stack
	Controlling Garbage Collection
	Userdata
	Metatables
	Loading Lua Chunks
	Manipulating Tables
	Manipulating Environments
	Using Tables as Arrays
	Calling Functions
	Protected Calls
	Defining C Functions
	Defining C Closures
	Registry
	Error Handling in C
	Threads

	The Debug Interface
	Stack and Function Information
	Manipulating Local Variables and Upvalues
	Hooks

	Standard Libraries
	Basic Functions
	Coroutine Manipulation
	String Manipulation
	Table Manipulation
	Mathematical Functions
	Input and Output Facilities
	Operating System Facilities
	The Reflexive Debug Interface

	Lua Stand-alone
	Incompatibilities with Previous Versions
	The Complete Syntax of Lua
	Index

