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Preface

It gives us great pleasure to publish this collection of Lua gems. Not only does

it record some of the existing wisdom and practice on how to program well in

Lua, but it also reflects the maturity of the Lua community. It is gratifying

to see that Lua has motivated other people to learn it well and to share their

knowledge with other users. In well-written articles that go much beyond the

brief informal exchange of tips in the mailing list or the wiki, the authors share

their mastery of all aspects of Lua programming, elementary and advanced.

Producing this book has required several steps. In response to a call for con-

tributions, we received over 70 abstracts, selected 43, and received full versions

for 28 of these. The authors received our comments and suggestions to prepare

the final version of their articles. The whole process took two years, much longer

than we had imagined. The selection of abstracts proved to be surprisingly dif-

ficult. Many potentially good submissions could not be accepted due to space

limitations. Despite the long time it took and the amount of work it required

(or because of it!), we are very happy to have this collection of articles on Lua

contributed by members of our community. We trust the book was worth waiting

for.

We thank all the authors for their hard work on the articles and everyone

that submitted abstracts in the first phase. We also thank the whole Lua

community for its friendliness and expertise. The active participation of our

users has been to us a constant source of motivation for improving Lua. Finally,

we give our warm thanks to Cameron Laird and Mark Hamburg for writing

forewords to this book.

Additional material and errata will appear in the book web site:

http://www.lua.org/gems/

The Lua team

Rio de Janeiro, November 2008
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Foreword

by Cameron Laird

When I need a programming language that’s as easy as possible to embed,

I choose Lua. Lua isn’t just supple, free, portable, and compact, though; it’s

also powerful—and to get the most out of it, I’m glad I have Lua Programming

Gems.

I need to explain that I mean something specific by that. Most of my read-

ing is on the ’Net: I look up references, I read tutorials for unfamiliar material,

I moderate a half-dozen Wikis, and I chat about specific techniques with col-

leagues on-line. My consumption of books has nose-dived. Lua Programming

Gems is a book worth reading, though: its individual chapters get across ideas

that simply aren’t explained anywhere else.

Lua Programming Gems emphasizes practicality in a way I like. While the

six authors in Part III certainly employ classroom concepts correctly in their

examinations of “Algorithms and Data Structures”, they do it all with working

Lua code. The same pattern is apparent throughout Lua Programming Gems:

it’s filled with ideas likely to help me in my next programming project.

If you’re new to Lua, you might be anxious about what you’ll find. You

can see that Lua offers definite advantages, but how hard is it to pick up

what’s undeniably a minority language? Lua Programming Gems will ease your

concerns: the authors write clearly, modestly, and even deftly. The very first

chapter, for example, tackles difficult material, including dynamically-allocated

per-thread storage. The tone is consistent throughout the book. Rather than

show off their expertise or indulge in private jokes, habits common for authors

from other domains, the Lua Programming Gems authors focus on the specific

details and examples that best teach their chosen topics. They make it inviting

to dig deeper in Lua than you might do on your own.

Among the highlights of Lua Programming Gems for me: Part IV gives

insight into “Game Programming”, an area where I’ll probably never work,

although many of the techniques apply more broadly; Part V on “Embedding

and Extending” is crucial for much of the programming I like; and Chapter 13,

“Exceptions in Lua”, is a particular interest of mine.
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x FOREWORD

Do you want to “program well in Lua”? The Lua team set that as a goal when

it first announced its plans for Lua Programming Gems. The final result fulfills

that goal; you’ll like it.



Lua and Lightroom

Mark Hamburg
Founder, Adobe Photoshop Lightroom

When we started work on the project that would become Adobe Photoshop

Lightroom, we knew we wanted to make scriptability an important part of our

story, so early on we reviewed the usual suspects. What drew us to Lua was

its combination of simplicity, power, ease of embedding, and relatively high-

performance. Having a straightforward license helped too when it came time

to talk to Adobe’s lawyers. Personally, as an old Scheme fan, I was drawn to

its first-class closure support. I also found the coroutine system intriguing. The

relative minimalism also resonated with a back-to-basics attitude that had us

weaning ourselves away from intensive C++ usage and back toward C.

Still, it was hard to position Lua as anything other than an obscure choice.

We could cite heavy use in the games community and we had set out with a

mission of learning something from game developers, but if asked what mate-

rials one could turn to learn Lua or where we would find experienced Lua pro-

grammers, the answers were limited. For the former, we had the well-written

reference manual, some good material on the Lua users wiki, and an intelligent

forum on the Lua mailing list. This was good material, but there wasn’t a lot of

it. For the latter question, our answer was essentially “Any programmer worth

hiring ought to be able to learn Lua quickly.” This was a situation we were pre-

pared to deal with and the arrival of Programming in Lua certainly helped, but

it was easy to understand why it might be off putting to someone looking in from

the outside.

Why this matters is that along with Lua’s simplicity come some issues that

make people with backgrounds in other languages stumble. The beauty of a

small core is that there is a real opportunity for mastery. This is one of C’s great

strengths as well. That small core, however, comes at a price. For example, Lua

has no syntax for exception handling. C doesn’t either but having one seems

almost required in modern languages. Lua has a syntax for object-oriented

xi



xii LUA AND LIGHTROOM

message sends, but the actual implementation of an object system or class

system is a roll-your-own affair in Lua. As a result, one sees such issues raised

repeatedly on the Lua users list as people new to the language start using it and

then ask “But what about ?”

Programming in Lua provides answers to some of these questions but those

answers are necessarily terse. Lua Programming Gems dives deeper on these

issues and many more. It shows ways to deal with threading—an issue we

went through a few iterations on in Lightroom—and gives extended examples

of how to hook Lua into your application. You may not always like the answers.

For example, the object system presented here is quite minimalist. In the spirit

of Lua, however, you remain free to roll your own using or not using the ideas

presented here. The value comes in seeing the well worked examples together

with a discussion of motivations and comparisons to other approaches. If this

book had been around during Lightroom’s development, we probably would

have happily adopted some of the techniques it presents while simply taking

inspiration from others. As it was, we largely had to find our own way and while

that was rewarding in itself, the Lua community and particularly new Lua users

can be happy to now have a field guide that maps out some of the trails.

The broader lesson from Lightroom that I would like to leave Lua users with

is that you should let it pervade your work. Lua is sometimes described as being

a language for gluing pieces together, but as we discovered that glue can extend

quite deep. We started out looking for a scripting language for a native code

application. Then we started thinking it would be nice to allow Lua to exist

as a peer to native code. In the end, we ended up with a system where native

code provides the foundation, but it is effectively a second-class citizen in the

application as a whole. Large portions of Lightroom ended up getting written

in Lua including the object-relational mapping layer for the database and the

layout system for views. Lua defines the structure of the application and its

extensibility mechanisms. As a result, we had an application that was smaller

by far than some of its competitors, easy to change, largely cross-platform in

its implementation, and suffered essentially no compile-link cycle. The reason

things work out this way is that Lua is both very expressive compared to most

native languages and sufficiently efficient that you can let it do a lot more of

the work than one might be tempted to in other scripting languages. At the

same time, the boundary between native code and Lua is sufficiently clean and

efficient that when we needed to do things in native code, it wasn’t a huge burden

to expose that functionality to Lua nor to access functionality written in Lua.

So, my advice to Lua users and potential users is to think seriously about

how widely you can let Lua spread through your work, be grateful for books like

this one and Programming in Lua and be even more grateful for the work that

the Lua team has done and their generosity in sharing it with the world.
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