
Lua Programming Gems

Lua Programming Gems

edited by

Luiz Henrique de Figueiredo

Waldemar Celes

Roberto Ierusalimschy

Lua.org

Rio de Janeiro

2008

Lua Programming Gems
edited by Luiz Henrique de Figueiredo, Waldemar Celes, Roberto Ierusalimschy.

ISBN 978-85-903798-4-3.

Copyright c© 2008 by the editors and individual contributors. All rights reserved.

Book cover by Pedro de Mazza Cerqueira. Lua logo design by Alexandre Nako.

Typesetting by the editors using LATEX.

Book web site: http://www.lua.org/gems/

Although the editors and the authors have used their best efforts in preparing

this book, they assume no responsibility for errors or omissions, or for any dam-

age that may result from the use of the information presented here. All product

names mentioned in this book are trademarks of their respective owners.

Contents

Preface . vii

Foreword, by Cameron Laird . ix

Lua and Lightroom, by Mark Hamburg . xi

Contributors . xiii

I Programming Techniques
1 Lua Per-Thread Library Context . 3

Doug Currie

2 Lua Performance Tips . 15

Roberto Ierusalimschy

3 Vardump: The Power of Seeing What’s Behind 29

Tobias Sülzenbrück and Christoph Beckmann

4 Serialization with Pluto . 33

Ben Sunshine-Hill

5 Abstractions for LuaSQL . 43

Tomás Guisasola Gorham

6 Boostrapping a Forth in 40 Lines of Lua Code 57

Eduardo Ochs

7 Effecting Large-Scale Change (with little trauma) using Metatables . . 71

Sérgio Alvares Maffra and Pedro Miller Rabinovitch

II Design Techniques
8 MVC Web Development with Kepler 85

André Carregal and Yuri Takhteyev

9 Filters, Sources, Sinks, and Pumps . 97

Diego Nehab

10 Lua as a Protocol Language . 109

Patrick Rapin

v

vi CONTENTS

11 Lua Script Packaging . 119

Han Zhao

12 Objects, Lua-style . 129

Reuben Thomas

13 Exceptions in Lua . 135

John Belmonte

III Algorithms and Data Structures
14 Word Ladders . 149

GavinWraith

15 Building Data Structures and Iterators in Lua 155

Luis Carvalho

16 A Primer of Scientific Computing in Lua 173

Luis Carvalho

17 Complex Structured Data Input . 201

Julio M. Fernández-Dı́az

18 Lua Implementations of Common Data Structures 211

MatthewM. Burke

19 Tic-Tac-Toe and the Minimax Decision Algorithm 239

Rafael Savelli and Roberto de Beauclair Seixas

IV Game Programming
20 Using Lua in Game and Tool Creation 249

Konstantin Sokharev and Vadim Groznov

21 A Dynamic and Flexible Event System for Script-Driven Games 259

Robert Oates

22 Lua for Game Programming . 269

Steve Gargolinski

23 Designing an Efficient Lua Driven Game Scripting Engine 281

Nicolas Peri

V Embedding and Extending
24 Enhanced Coroutines in Lua . 291

Patrick Rapin

25 Using Lua in Pascal . 301

Jeremy Darling

26 Porting Lua to a Microcontroller . 313

Ralph Hempel

27 Writing C/C++ Modules for Lua . 325

Ralph Steggink andWim Couwenberg

28 Interpreted C Modules . 337

Jérôme Vuarand

Preface

It gives us great pleasure to publish this collection of Lua gems. Not only does

it record some of the existing wisdom and practice on how to program well in

Lua, but it also reflects the maturity of the Lua community. It is gratifying

to see that Lua has motivated other people to learn it well and to share their

knowledge with other users. In well-written articles that go much beyond the

brief informal exchange of tips in the mailing list or the wiki, the authors share

their mastery of all aspects of Lua programming, elementary and advanced.

Producing this book has required several steps. In response to a call for con-

tributions, we received over 70 abstracts, selected 43, and received full versions

for 28 of these. The authors received our comments and suggestions to prepare

the final version of their articles. The whole process took two years, much longer

than we had imagined. The selection of abstracts proved to be surprisingly dif-

ficult. Many potentially good submissions could not be accepted due to space

limitations. Despite the long time it took and the amount of work it required

(or because of it!), we are very happy to have this collection of articles on Lua

contributed by members of our community. We trust the book was worth waiting

for.

We thank all the authors for their hard work on the articles and everyone

that submitted abstracts in the first phase. We also thank the whole Lua

community for its friendliness and expertise. The active participation of our

users has been to us a constant source of motivation for improving Lua. Finally,

we give our warm thanks to Cameron Laird and Mark Hamburg for writing

forewords to this book.

Additional material and errata will appear in the book web site:

http://www.lua.org/gems/

The Lua team

Rio de Janeiro, November 2008

vii

Foreword

by Cameron Laird

When I need a programming language that’s as easy as possible to embed,

I choose Lua. Lua isn’t just supple, free, portable, and compact, though; it’s

also powerful—and to get the most out of it, I’m glad I have Lua Programming

Gems.

I need to explain that I mean something specific by that. Most of my read-

ing is on the ’Net: I look up references, I read tutorials for unfamiliar material,

I moderate a half-dozen Wikis, and I chat about specific techniques with col-

leagues on-line. My consumption of books has nose-dived. Lua Programming

Gems is a book worth reading, though: its individual chapters get across ideas

that simply aren’t explained anywhere else.

Lua Programming Gems emphasizes practicality in a way I like. While the

six authors in Part III certainly employ classroom concepts correctly in their

examinations of “Algorithms and Data Structures”, they do it all with working

Lua code. The same pattern is apparent throughout Lua Programming Gems:

it’s filled with ideas likely to help me in my next programming project.

If you’re new to Lua, you might be anxious about what you’ll find. You

can see that Lua offers definite advantages, but how hard is it to pick up

what’s undeniably a minority language? Lua Programming Gems will ease your

concerns: the authors write clearly, modestly, and even deftly. The very first

chapter, for example, tackles difficult material, including dynamically-allocated

per-thread storage. The tone is consistent throughout the book. Rather than

show off their expertise or indulge in private jokes, habits common for authors

from other domains, the Lua Programming Gems authors focus on the specific

details and examples that best teach their chosen topics. They make it inviting

to dig deeper in Lua than you might do on your own.

Among the highlights of Lua Programming Gems for me: Part IV gives

insight into “Game Programming”, an area where I’ll probably never work,

although many of the techniques apply more broadly; Part V on “Embedding

and Extending” is crucial for much of the programming I like; and Chapter 13,

“Exceptions in Lua”, is a particular interest of mine.

ix

x FOREWORD

Do you want to “program well in Lua”? The Lua team set that as a goal when

it first announced its plans for Lua Programming Gems. The final result fulfills

that goal; you’ll like it.

Lua and Lightroom

Mark Hamburg
Founder, Adobe Photoshop Lightroom

When we started work on the project that would become Adobe Photoshop

Lightroom, we knew we wanted to make scriptability an important part of our

story, so early on we reviewed the usual suspects. What drew us to Lua was

its combination of simplicity, power, ease of embedding, and relatively high-

performance. Having a straightforward license helped too when it came time

to talk to Adobe’s lawyers. Personally, as an old Scheme fan, I was drawn to

its first-class closure support. I also found the coroutine system intriguing. The

relative minimalism also resonated with a back-to-basics attitude that had us

weaning ourselves away from intensive C++ usage and back toward C.

Still, it was hard to position Lua as anything other than an obscure choice.

We could cite heavy use in the games community and we had set out with a

mission of learning something from game developers, but if asked what mate-

rials one could turn to learn Lua or where we would find experienced Lua pro-

grammers, the answers were limited. For the former, we had the well-written

reference manual, some good material on the Lua users wiki, and an intelligent

forum on the Lua mailing list. This was good material, but there wasn’t a lot of

it. For the latter question, our answer was essentially “Any programmer worth

hiring ought to be able to learn Lua quickly.” This was a situation we were pre-

pared to deal with and the arrival of Programming in Lua certainly helped, but

it was easy to understand why it might be off putting to someone looking in from

the outside.

Why this matters is that along with Lua’s simplicity come some issues that

make people with backgrounds in other languages stumble. The beauty of a

small core is that there is a real opportunity for mastery. This is one of C’s great

strengths as well. That small core, however, comes at a price. For example, Lua

has no syntax for exception handling. C doesn’t either but having one seems

almost required in modern languages. Lua has a syntax for object-oriented

xi

xii LUA AND LIGHTROOM

message sends, but the actual implementation of an object system or class

system is a roll-your-own affair in Lua. As a result, one sees such issues raised

repeatedly on the Lua users list as people new to the language start using it and

then ask “But what about ?”

Programming in Lua provides answers to some of these questions but those

answers are necessarily terse. Lua Programming Gems dives deeper on these

issues and many more. It shows ways to deal with threading—an issue we

went through a few iterations on in Lightroom—and gives extended examples

of how to hook Lua into your application. You may not always like the answers.

For example, the object system presented here is quite minimalist. In the spirit

of Lua, however, you remain free to roll your own using or not using the ideas

presented here. The value comes in seeing the well worked examples together

with a discussion of motivations and comparisons to other approaches. If this

book had been around during Lightroom’s development, we probably would

have happily adopted some of the techniques it presents while simply taking

inspiration from others. As it was, we largely had to find our own way and while

that was rewarding in itself, the Lua community and particularly new Lua users

can be happy to now have a field guide that maps out some of the trails.

The broader lesson from Lightroom that I would like to leave Lua users with

is that you should let it pervade your work. Lua is sometimes described as being

a language for gluing pieces together, but as we discovered that glue can extend

quite deep. We started out looking for a scripting language for a native code

application. Then we started thinking it would be nice to allow Lua to exist

as a peer to native code. In the end, we ended up with a system where native

code provides the foundation, but it is effectively a second-class citizen in the

application as a whole. Large portions of Lightroom ended up getting written

in Lua including the object-relational mapping layer for the database and the

layout system for views. Lua defines the structure of the application and its

extensibility mechanisms. As a result, we had an application that was smaller

by far than some of its competitors, easy to change, largely cross-platform in

its implementation, and suffered essentially no compile-link cycle. The reason

things work out this way is that Lua is both very expressive compared to most

native languages and sufficiently efficient that you can let it do a lot more of

the work than one might be tempted to in other scripting languages. At the

same time, the boundary between native code and Lua is sufficiently clean and

efficient that when we needed to do things in native code, it wasn’t a huge burden

to expose that functionality to Lua nor to access functionality written in Lua.

So, my advice to Lua users and potential users is to think seriously about

how widely you can let Lua spread through your work, be grateful for books like

this one and Programming in Lua and be even more grateful for the work that

the Lua team has done and their generosity in sharing it with the world.

Contributors

Following the Brazilian tradition, the contributors are listed in alphabetical

order of first name.

André Carregal was introduced to Lua in 1994 during his MSc in Computer

Science, which was supervised by Roberto Ierusalimschy. He has been working

with web development using Lua since 1996. He currently coordinates the

Kepler project and the LuaForge site while working as a consultant for Lua-

related projects.

Ben Sunshine-Hill is a PhD student at the University of Pennsylvania,

studying computer graphics. He did his undergraduate studies at the University

of Southern California and received an MSc from the University of California,

Los Angeles. He has been a game developer at several mobile and mainstream

game development studios, and has previously published work on real-time

rendering methods.

Diego Nehab was introduced to Lua in 1996, while working for Tecgraf in

PUC-Rio. Over the years, he has been involved in a variety of Lua-related

projects, including the IupLua, CDLua, IMLua, and LuaSQL libraries. He is

best known as the author of the LuaThreads and LuaSocket libraries. Diego

received a BEng in Computer Engineering and an MSc in Programming Lan-

guages from PUC-Rio, under the supervision of Roberto Ierusalimschy. He later

received an MSc and a PhD in Computer Graphics from Princeton University.

His research now focuses on high-quality shape acquisition and on real-time

rendering techniques.

Doug Currie develops award-winning medical devices with Sunrise Labs,

Inc. in Auburn, New Hampshire, USA. Over a thirty-year career, Doug has

led electronics, mechanical, and software teams developing high-tech products

with particular emphasis on reliability and adaptability. Some of these products,

based on a massively parallel computing architecture Doug invented, are used

in national transportation and world-class manufacturing operations. With a

xiii

xiv CONTRIBUTORS

special interest in little languages, Doug has also contributed technically to open

source projects such as Moscow ML, Hibernate, Gambit Scheme, and SICStus

Prolog. Doug holds an S.B. degree in Electrical Engineering and Computer

Science from the Massachusetts Institute of Technology.

Eduardo Ochs is a mathematician, or sort of; his interest on simplification

of proofs led him to Non-Standard Analysis, and from there he drifted to Logic,

Type Theory and Categorical Semantics. In parallel with his “normal” academic

life he has been a contributor to the GNU Project since 1999, and his main

focus areas in Free Software are little languages and programmable textual

interfaces. He keeps a big, messy homepage at http://angg.twu.net/; all the

html pages in it are generated with “BlogMe”, another extensible little language

built on top of Lua.

Gavin Wraith is Emeritus Reader in Mathematics, Sussex University, UK.

Joined Sussex University in 1963, retired in 1999. Founding chairman of the

Sussex University Computer Science department in 1985.

Jérôme Vuarand is a young software engineer specialized in AI and working

in the video games industry. He discovered Lua while looking for an embeddable

scripting language, just when Lua 5.1 was released, and he fell in love both

for the language itself and its new package system. His initial motivation was

to move away from legacy in-house script engines, but he’s now using it as a

general programming language in all his personal projects, from mobile robotics

to modern game engines entirely written in Lua.

John Belmonte is a software engineer currently residing in New York City.

He happened upon Lua as a video game developer in 2000 and was among the

first to embed it into a home console title. Since then he has been active in the

Lua community through chartering lua-users.org, participating in workshops,

and contributing to the language’s evolution.

Julio M. Fernández-Dı́az has a PhD degree in Mining Engineering (1989).

He is Professor of Applied Physics at the University of Oviedo in Spain and

researches mainly in the field of atmospheric aerosols. His interests lie in

developing physical and mathematical simulations on computers. His first

‘computer’ was an HP25 calculator in 1977. As a programmer, he uses Fortran,

C, Lua, Tcl/Tk and Postscript, usually as part of his research.

Konstantin Sokharev professionally develops video games since 2001, suc-

cessfully completed two RPG/RTS projects for PC, one for PocketPC/Palm. He

currently holds a post of technical director at IceHill llc. developing Action-RTS

title “Empire Above All” and several unannounced projects.

Luis Eduardo Ximenes Carvalho has a BSc (1997) in Civil Engineering

from the Federal University of Ceará (UFC), an MSc (2000) in Transportation

xv

Engineering from the Federal University of Rio de Janeiro (UFRJ), and an

MSc (2002) in Computer Science from UFC, all in Brazil. He is currently a

PhD candidate in the Division of Applied Math at Brown University, where his

research comprises applications of Bayesian statistics to computational biology.

He also has interest in logistics and optimization, scientific computing, graph

theory, and programming languages, especially Lua.

Matthew Burke is an Assistant Professor of Computer Science at The George

Washington University in Washington, D.C. Lua has replaced Forth as his

favorite language in which to program while riding the subway, and he does

so using whatever device is serving as his PDA du jour. He is also developing

a curriculum for introductory Computer Science which uses Lua. When not

programming, he likes to travel with his wife and son. He was the organizer of

the Lua Workshop 2008.

Nicolas Peri is co-founder and technical director of the French company Stone-

Trip, creator of the 3D game development platform ShiVa. He is in charge,

among other things, of the ShiVa scripting engine, which is based on Lua. Before

that, he worked as engine developer for other gaming companies, including

Kalisto Entertainment and UbiSoft Tiwak.

Patrick Rapin studied at the Swiss Federal Institute of Technology at Lau-

sanne (EPFL). He is now a software engineer working for Olivetti Engineer-

ing at Yverdon-les-Bains, developing printer firmware, image processing algo-

rithms, and printer test tools.

Pedro Miller Rabinovitch , a PUC-Rio graduate, has worked with Lua at

Tecgraf and Cipher Technology, and is currently a game developer at Jagex.

Rafael Moreira Savelli graduated in Computer Engineering at PUC-Rio.

He worked for Tecgraf in PUC-Rio for over four years. He is now studying for an

MSc at UFF and working in the Visgraf laboratory at IMPA.

Ralph Hempel is a Professional Engineer in Ontario, Canada and specializes

in designing embedded systems. After learning to program on an HP41C, he

never lost his fascination with small languages and hacking consumer products.

He wrote pbForth for the LEGO MINDSTORMS RCX and then ported Lua to

the NXT. When he’s not wrangling embedded systems, Ralph enjoys mountain

biking in the summer, snowboarding in the winter, and ice hockey all year long.

Ralph Steggink joined Océ in 2001. With a degree in both chemistry and com-

puter science, he now develops controller software for printers. Together with

Wim Couwenberg he prototyped revolutionary concepts using Lua. These cur-

rently find their way into several Océ products. He is an enthusiastic volleyball

player and trainer.

xvi CONTRIBUTORS

Reuben Thomas is a freelance singer and computer scientist living in Lon-

don. He took a BA in Mathematics with Computer Science from Cambridge

University, as well as a doctorate in virtual machines. These days his comput-

ing interests center on contributions to a multitude of open source projects, with

particular emphasis on improving the quality of mature software, and on auto-

matic document processing. He is mostly employed as a classical baritone.

Robert Oates is a professional game programmer specializing in gameplay

systems, artificial intelligence, and machine learning.

Roberto de Beauclair Seixas works with Research and Development at

the Institute of Pure and Applied Mathematics (IMPA) in Rio de Janeiro, as

member of the Vision and Computer Graphics Laboratory (Visgraf). He got

his PhD in Computer Science at PUC-Rio, where he works with the Computer

Graphics Technology Group (Tecgraf). From 1982 to 1998, he worked in the

Computer Science Department at the National Laboratory for Scientific Com-

putation (LNCC). His research interests include Scientific Visualization, Vol-

ume Rendering, Computer Graphics, High Performance Computing, Geometric

Modeling, Military Warfare Simulations, GIS, and Medical Images.

Roberto Ierusalimschy is an Associate Professor at the Catholic University

in Rio de Janeiro. He is the leading architect of Lua and the author of the book

“Programming in Lua”.

Sérgio Alvares Maffra is a MSc and Computer Engineer from PUC-Rio. He’s

been working with Lua at Tecgraf as a software developer for over a decade now.

Steve Gargolinski spent his early programming days hacking together small

games built with code snippets from a QuickBasic programming manual. He

has since evolved into a professional game developer, working as a member of

the technical teams that produced the Zoo Tycoon 2 series, Star Trek: Legacy,

and the upcoming Empire Earth III. Steve is currently working for Blue Fang

Games as an AI Programmer. His interests include baseball, abstract strategy,

practical AI, and walking in the woods.

Tobias Sülzenbrück and Christoph Beckmann are bachelor students of

media systems at the Bauhaus-University of Weimar. Tobias fields of interests

range from web development up to graphics programming. He has implemented

a multi-agent system for simulating construction processes in Lua. Christoph

is also interested in web development and is active in the research field of

computer-supported cooperative work.

Tomás Guisasola works with Lua since 1995 when he developed with Roberto

Ierusalimschy (his MSc advisor) the first implementation of the hooks mecha-

nism and the debug facilities. Since then he worked mainly with CGILua as

the platform for some administrative systems at PUC-Rio and also contributed

xvii

with the Kepler team in the development of LuaLDAP, LuaXMLRPC, LuaSOAP,

LuaDoc, and LuaSQL.

Vadim Groznov began programming at the age of fourteen, was involved

in database programming for a long time, and took part in the creation of a

custom scripting language. He professionally develops video games since 2002.

His extensive experience of system programming allowed for the design and

realisation of complex architectural solutions for game tools at IceHill llc.

Wim Couwenberg holds a PhD in mathematics and is employed at the R&D

department of the European printing and document company Océ, based in The

Netherlands, where he organised the international Lua Workshop 2006. He has

been using Lua in projects ranging from simple data processing scripts to entire

networked applications.

Yuri Takhteyev is a doctoral student at the UC Berkeley School of Informa-

tion studying the role of space in software development communities.

Han Zhao is a shareware programmer in Beijing, P.R. China. Before that he

worked for a mobile-phone design house. Now he uses Lua and C++ for everyday

programming: an isometric role-playing game engine, an action game, and a

shareware product. He also maintains a bit-operation lib LuaBit on LuaForge.

