
Io
a small programming language

Purpose

briefly show Io’s Lua roots

present overview of Io

get your feedback

working together

Some history

interested in dynamic OO languages since 1990

did NeXTstep/ObjC and Python development

found Lua - a great language

used Lua on Yindo project

A new language

liked Lua’s size and speed but...

willing to trade off for greater simplicity

wanted a pure OO language

Lua and Io
small

simple

highly dynamic

multi-platform

multi-state

BSD/MIT licensed

designed for embedding

incremental garbage collection

syntax that script writers can deal with

Lua

faster

smaller

more mature

larger community

Io

pure OO

no globals

code is data

lazily evaluated arguments

simpler, more consistent syntax and semantics

Io overview

simple prototype-based object model

all actions are messages

simple and consistent syntax

dynamic all messages are dynamic

code is data and runtime modifiable

concurrent all objects can be actors

actors use coroutines

futures supported

and... bundled with extensive official bindings

The language

no keywords

no statements (only expressions)

expressions are composed only of messages

supports lexically scoped blocks

objects can have multiple parents

Message Syntax

Lua Io

a:b() a b

a:b(c) a b(c)

a:b(c, d) a b(c, d)

Operators

expression compiles to

a * 2 * b a *(2) *(b)

Assignment

This separation allows self to be implicit

expression compiles to

a := 2 setSlot(“a”, 2)

a = 2 updateSlot(“a”, 2)

Loops

while(x < 10, ...)

for(i, 1, 10, ...)

loop(...)

10 repeatTimes(...)

Conditions

a := if(b == 1, c, d) // conditions are expressions

if(a == b) then(

 ...

) elseif(...) then(

 ...

)

Enumeration

someList := list(“a”, 2.3, “foo”)

someList foreach(i, v,

writeln(i, “ : ”, v)

)

// foreach also works on Maps, Strings, Buffers, etc

Blocks and Methods

foo := method(a, a + b) // object scoped

foo := block(a, a + b) // lexically scoped

Scoping

no globals

variables are local by default

Expressions

a := people select(person, person age < 30)

names := people map(i, person, person name)

“Macro” Example
glChunk := method(

 glPushMatrix

 sender doMessage(thisMessage argAt(0))

 glPopMatrix

)

glChunk(glTranslated(1,2,3); glRectd(0,0,100,100))

Account := Object clone do(

balance := 0

deposit := method(amount,

balance = balance + amount

)

)

Objects

account := Account clone

account deposit(10.00)

writeln(“balance:”, account balance)

Example

Number double := method(self * 2)

100 double

==> 200

Everything is an Object

Number double := method(self * 2)

Number getSlot(“double”) code

==> “method(self *(2))”

Introspection

Concurrency

url fetch // sync message

f := url @fetch // future message

url @@fetch // async message

url := URL with(“http://www.google.com”)

Futures auto-detect deadlocks

IoVM

Date (high precision, supports dates < 1970)

Duration

List

ImmutableSequence (Strings/Symbols)

Sequence (Buffers)

Map

WeakLink

IoServer
SGMLParser (supports XML and HTML)

Socket (async, libevent, supports async DNS)

Transparent Distributed Objects

Vector (supports SIMD/altivec)

Regex

SQLite3

MD5

Blowfish

CGI, URL

IoDesktop

OpenGL, GLU, GLUT

Audio (PortAudio)

Font (FreeType, caches in texture)

Movie (ffmpeg)

Ion user interface toolkit

Ion example

Implementation

Garbage Collector

non-moving, tri-color, write-barrier, generational

Tricks

objects use perfect hashes

lookups done by symbol

objects create hashes on demand

objects are recycled

block contexts are recycled immediately

Platforms

Unix OSX, Linux, *BSD, Irix

Windows Cygwin, Mingw, MSVC

Other Symbian, Syllable, Zeta

What’s next?

Io 1.0 by end of 2005

incremental orthogonal persistence

packages

docs for Ion

bug tracker

revision control

official wiki

Working Together

bindings

Vector, Image, Movie, Font...

I’m interested to hear your thoughts and suggestions

steve@dekorte.com

more info at

iolanguage.com

