
The Novelties of Lua 5.1The Novelties of Lua 5.1

Roberto Ierusalimschy

Lua Workshop

Parser ReentrantParser Reentrant

• Lua can be freely called while parsing a
chunk

• New function load
• Opens the door for Macro-processing

Lua Workshop

New Syntax for Long StringsNew Syntax for Long Strings

• [==[...]==]
• Also valid for long comments

• --[=[...]=]
• Allows insertion of any literal string

• does not need to end with newline

• Requirements:
• variable delimiter
• clear border around delimiter (e.g., [[[...]]]

does not work)
• Old [[...]] as a special case

Lua Workshop

New Syntax for Long Strings (2)New Syntax for Long Strings (2)

• No more nesting
• string ends with a fix mark

• simpler description (and implementation)

string.find(s, “%[(=*)%[.-]%1]”)

Lua Workshop

Coroutine DebugCoroutine Debug

• Debug library works on any coroutine:

• On error, coroutines do not unwind the stack
• can be inspected later

print(debug.traceback(co))

ok = coroutine.resume(co)
if not ok then
 print(debug.traceback(co))
end

Lua Workshop

New Mod OperatorNew Mod Operator

• Why Lua did not have it?
• probably we forgot it :)

• Several uses
• helps with bitwise operations

Lua Workshop

New Mod Operator (2)New Mod Operator (2)

• Main rule: a = (a div b)b + a%b

• But a div b has several possible meanings
• floor(a/b), ceil(a/b), round(a/b), trunc(a/b)

• Which is best?

• floor has some nice properties
• a = b mod c iff a%c = b%c

• a%b always in range [0..b) for positive b

Lua Workshop

New Length OperatorNew Length Operator

• Final syntax: #t
• Results in the length (or size, or last index) of

an array (or list, or sequence)

• Computed in (log n) time
• with very low multiplier

• faster than table.getn even for huge arrays

• No more table.setn

Lua Workshop

New Length Operator (2)New Length Operator (2)

• Subtle (and mostly useless) semantics for
lists with holes
• use explicit size in those cases

• Nice idioms for list manipulation:

t[#t+1] = v -- insertion
print(t[#t]) -- last element
t[#t] = nil -- removing

Lua Workshop

String LibraryString Library

• string.find split in two functions
• string.find finds patterns

• string.match extracts subpatterns (captures)

• For coherence, string.gfind should be
renamed string.gmatch

Lua Workshop

Specialized API FunctionsSpecialized API Functions

• lua_tointeger/lua_pushinteger
• lua_getfield/lua_setfield
• Frequent cases

• Allows for small optimizations
• bigger ones for lua_tointeger

• lua_createtable(asize, rsize)
• bigger optimizations in specific cases

• in Lua, constructors do the job

Lua Workshop

Configurable Memory AllocationConfigurable Memory Allocation

• lua_newstate gets as argument an
allocation function

• Allocation function must work as a
generalized resize

• Access to original block size
• memory system does not need to keep it

• Access to an uninterpreted void *
• allow independent states to use different pools

Lua Workshop

Config. Memory Allocation (2)Config. Memory Allocation (2)

• Lua core does not directly access OS
services
• I/O, memory, etc.
• uses externally-provided functions for that

• Easy to convert the core to a freestanding C
environment

Lua Workshop

function foo (...)
 print(...)
end

New Vararg MechanismNew Vararg Mechanism

• ... as new vararg expression

• Avoids creating excessive tables

• Avoids arbitrary name

• Main chunks are vararg functions

Lua Workshop

EnvironmentsEnvironments

• C functions and userdata also have
environments
• all objects except tables have an environment

• Concept more uniform

• C functions have direct access to their
environment
• pseudo-index

• Userdata environment only for pogrammer’s
use

Lua Workshop

Environments (2)Environments (2)

• C-function environments help libraries share
common data

• Userdata environments help link between
userdata and corresponding Lua objects
• eaiser than references

• no problems with cycles

Lua Workshop

Incremental Garbage CollectorIncremental Garbage Collector

• Main motivation for Lua 5.1

• Uses a three-color algorithm
• well known, but with several undocumented

details

• main invariant: black objects never point to white
objects

Lua Workshop

Garbage-Collector Garbage-Collector (2)(2)

• Granularity
• several atomic tasks
• seems to be no problem in real use

• Step size
• how much to do at each step?
• how to compare “step size” across different

phases?

• Collector speed
• stops between steps and between collections

Lua Workshop

New Module SystemNew Module System

Lua Workshop

New Module SystemNew Module System

• Not as much change as it seems

• Mostly policies (bad)

• But suggested, not enforced (good)

• Main changes:
• require directly handles C libraries

• submodules

• new function module facilitates modules to follow
suggested policies

• luaL_openlib does the same for C libraries

Lua Workshop

requirerequire

• First search for a loader for the given module

• “preload” table, Lua files, C libraries, “whole-
package” C libraries
• “all-in-one” Lua and or C libraries?

• After finding a loader, calls it with the module
name

Lua Workshop

Whole-Package C LibrariesWhole-Package C Libraries

• Given module a.b.c, search for C file a
• If found, look for function luaopen_a_b_c

to load module

• Same DLL may provide open functions for
different modules

• Do we need an “all-in-one” loader?

Lua Workshop

““Ignore MarkIgnore Mark””

• When building luaopen_ name, require
ignores everything before a “:”
• :mod  luaopen_mod
• v1_3:mod  luaopen_mod
• a.b.:c  luaopen_c

• Not intended for regular use, but helpful for
some situations
• simultaneous use of two different versions of a

library

best option?

Lua Workshop

modulemodule

• Whole setup for a module:

• create new table

• assign it to given global name

• assign it to package.loaded table

• set it as module’s environment

• inherit for global environment

• Rest of module written like regular Lua code

module(...)

Lua Workshop

Final RemarksFinal Remarks

• Several small changes

• Incremental garbage collector should reduce
pauses
• no “real-time” garanties

• New module system should improve
availability of third-part modules
• more policies than real code

• And a last novelty...

Lua Workshop

Programming Lua, 2nd edition
to be published by O’Reilly

