
LuaDec – a Lua decompiler

Hisham Muhammad
<hisham@inf.puc-rio.br>

Lua Workshop 2005

LuaDec

● Programming assignment, 2004
– Good way to learn about the Lua VM

● Targets Lua 5.0.2
● Written in C
● Based on the Luac disassembler

Writing a decompiler for Lua

● High-level opcodes
● Lots of symbolic information
● Registers map to local variables
● No goto
● Single compiler to target
● Not as easy as with stack machines

(Java)

Rebuilding constructs

● Decompiler performs two passes
● First pass:

– Identify jumps
– Mark position of scope blocks closed by

the CLOSE opcode

● Second, main pass:
– Symbolic interpretation
– Recursively process functions, following

the CLOSURE opcode

First pass

● A JMP opcode means we need to emit
some code on the other end of the
construct

● A backward JMP to an instruction after a
forward JMP is a “while”

● To an instruction after a TFORPREP is a
“for”

● Otherwise, is a “repeat” block

Symbolic interpretation

● Run through the code keeping track of
registers

x[a+b]=y[c+d] 0 1 2 3 4 5 6 7
 a b c d x y
ADD 6 0 1 a b c d x y a+b
ADD 7 2 3 a b c d x y a+b c+d
GETTABLE 7 5 7 a b c d x y a+b y[c+d]
SETTABLE 4 6 7 a b c d x y a+b y[c+d]

Locals allocate registers

local a,b,c 1 LOADNIL 0 2
a = 1 2 LOADK 0 0
b = 2 3 LOADK 1 1
c = a + b 4 ADD 2 0 1
local d = 4 5 LOADK 3 2
c = a + d 6 ADD 2 0 3
b = 10 7 LOADK 1 3
c = a + b 8 ADD 2 0 1
 constants locals
 0 1 0 a 1-8
 1 2 1 b 1-8
 2 4 2 c 1-8
 3 10 3 d 5-8

Locals allocate registers

local a,b,c 1 LOADNIL a c
a = 1 2 LOADK a 1
b = 2 3 LOADK b 2
c = a + b 4 ADD c a b
local d = 4 5 LOADK d 4
c = a + d 6 ADD c a d
b = 10 7 LOADK b 10
c = a + b 8 ADD c a b

When to output code

● As late as possible
● We have enough information about the

locals
– No need to add temporary variables

● As assignments happen, keep a list of
“pending variables”

● Only output a pending variable when it
is overwritten (or at the end of the
block)

When to output code

● Treat “variable registers” and
“temporary registers” differently

● Necessary for correctness

a, b = b, a 0 1 2
 a b
MOVE 2 1 a b b
MOVE 1 0 a a b
MOVE 0 2 b a b

Boolean conditions

● Turning a series of calculations, tests
and jumps into an expression, taking
into account:
– Short circuit
– Nested if's
– Relational constructs in assignments

Building an expression

● As expressions resulting in pairs of
relational tests and jumps are read,
they are collected in a list

● Translation into a boolean expression:
– Identify jumps to “then” and “else”

addresses
– Devise parenthesis scheme, build a tree
– “Print” expression, based on context

(conditions may be inverted)

 1 LOADNIL 0 2 0 local a, x, y
 2 JMP 0 16 ; to 19 while x do
 3 EQ 0 1 250 ; - 2 if ((x==2) and y)
 4 JMP 0 2 ; to 7 or ((x==3) and 1) or 0
 5 TEST 2 2 1 then
 6 JMP 0 5 ; to 12 a = 1
 7 EQ 0 1 251 ; - 3 do break end
 8 JMP 0 3 ; to 12 a = 2
 9 LOADK 3 2 ; 1 else
10 TEST 3 3 1 a = 3
11 JMP 0 0 ; to 12 do break end
12 LOADK 0 2 ; 1 a = 4
13 JMP 0 7 ; to 21 end
14 LOADK 0 0 ; 2 a = 5
15 JMP 0 3 ; to 19 end
16 LOADK 0 1 ; 3
17 JMP 0 3 ; to 21
18 LOADK 0 4 ; 4
19 TEST 1 1 1
20 JMP 0 -18 ; to 3
21 RETURN 0 1 0

Status

● Still gets confused with complex
expressions
– Fundamental limitation: no block analysis

● Successfully decompiles all demos in
the test/ directory

● After a few revisions, it now survives a
good deal of Roberto's stress tests

Avoiding decompilation

● LuaDec relies on the locals table
– luac -s confuses it

● It's easy to obfuscate your bytecode
– For example, swap opcodes around

● Reading Lua VM code is easy for a
human
– If you have any secrets, use encryption

Conclusions

● A decompiler for a high-level register
machine
– Impossible to make a perfect decompiler

for arbitrary bytecode

● Opportunities for optimizations in Lua
bytecode
– Offline compiler

● Not actively maintained (any takers?)

