[top] [next]

Using Lua to Build Domain Specific Languages

Using Lua to Build Domain Specific Languages

Tom Wrensch, University of the Pacific
Stockton, California, USA

[prev] [top] [next]

Domain-Specific Languages (DSLs)

Language design around concepts and structures of problem domain
Operates at level of abstraction of domain

"Linguistic Level of Analysis"
Focus on set of tasks or describe set of objects from domain.
Examples: Spreadsheets, grep, SQL,...

Usually designed for non-technical users.

General purpose programming capabilities?

DSLs empower users:
Uses their terminology and ideas.
High-level of abstraction (so small amount of code goes a long way)
"Get the job done" design philosophy

[prev] [top] [next]

Domain-Oriented Programming (DOP) Languages

Programming Languages that:

Offer one or more strong computational metaphors that allow domain concepts to be
readily modeled. DOP languages have simple syntax...They often achieve their
expressiveness by a strict uniformity of operations and types. DOP languages allow
the domain developer to map domain abstractions into DOP abstractions. - Thomas
and Barry (OOPSLA'03)

Examples: Lisp, APL, Smalltalk, and (of course)... Lua.

[prev] [top] [next]

Example 1: Student Grading Using Lua Syntax

The easiest (and usually best!) way to build a DSL with Lua is to use Lua's syntax and some
custom code.

Grades for students: programs I had didn't do what I wanted.
Concepts: student, Course, Assignment, Group, Grade
Knowledge Engineering is important in DSLs, even simple ones.

Grade versus GradeSet problem.

[prev] [top] [next]

Example 1: Student Grading Using Lua Syntax

Student ("HFred", "Fred Hamster", "f hamster@pacific.edu")

Course("Compl41", "Programming Languages")

Group("Homework", 40)

Group("Tests", 40)

Group("Project" 20)

Assignment {name="HWO1", desc="Lexical Analyzer",
due="23 Sept", points=20}

GradeSet {

{"COMP141", "Hwoel", "Hwe2", }
{"HFred", 19, 10, }
{"CMiko", 17, 12, }

=

[prev] [top] [next]

Example 2: Poetry Composer Using gsub

Useful technique for bridging existing languages or other special cases.
Powerful and fast but also difficult to write/read
Hard to do good error messages.

Used to read and existing description system for words and poem patterns.
Concepts: Word, Syllable count, Concept, Rhyme, Phrase, Poem
Structures: concept groups, concept matching, phrase, poem

Implementation Issues: Break into bite-sized pieces first.
Declarations, statements, lines, whatever works.

Iterative application of gsub is as powerful as a grammar-based system.

[prev] [top] [next]

Example 2: Poetry Composer Using gsub

--- Words

tree 1 noun xee
crushing 2 ing xing

coding 2 ing verb xing

-- Concepts/Ideas

POS -> noun adjective
adjective -> ing

RHYME -> xee xing

-- Poem

: POEM haikulike

: 5 (noun) (ing verb) (noun)
: 7 (noun) (verb) (prep) (article) (noun)
: 5 (noun) (verb) *

: END

: COMPOSE 100 haikulike

[prev] [top] [next]

Example 2: Poetry Composer Using gsub

Lua writing starts
Fingers fly across the keys
Elegance lives on

[prev] [top] [next]

Example 3: Research Prototype Using Parser

Traditional language implementation works pretty well too.
Lexical scanner, Parser (Top-down), Object-based parse tree.

Prototype of high-level class-focused language.
Domain is object-oriented design.
Code defines how classes interact, not objects and methods.
Concepts: class, list, value, address/path, others?
Structures: subclassing, tree-like class structure, paths.

[prev] [top] [next]

Example 3: Research Prototype using Parser

define ParentChild($parent, $plist, $child, $parref)
List($parent.$children)

Value($child. $parref)

Action($child. $parref.onUnset,apply(self.value $plist),
.remove, self)

Action($child. $parref.onSet,apply(self.value, $plist),
.add, self)

end

class(Book)

class(Shelf)

List(Book.authors, String)
Value(Book.title, String)
Value(Book.location, Shelf)
ParentChild(Shelf.contents, Book.location)

[prev] [top]

Conclusions

DSLs are good.
DOP Languages are the best choice for building DSLs.
Lua is a DOP Language

Know the Audience, know the domain.
Start with Lua syntax for prototyping, stay with it if possible!
...but Lua can take you farther if you need it.

