
[top] [next]

Using Lua to Build Domain Specific Languages

Using Lua to Build Domain Specific Languages

Tom Wrensch, University of the Pacific
Stockton, California, USA

[prev] [top] [next]

Domain-Specific Languages (DSLs)

• Language design around concepts and structures of problem domain
• Operates at level of abstraction of domain

• "Linguistic Level of Analysis"
• Focus on set of tasks or describe set of objects from domain.
• Examples: Spreadsheets, grep, SQL,...

• Usually designed for non-technical users.
• General purpose programming capabilities?
• DSLs empower users:

• Uses their terminology and ideas.
• High-level of abstraction (so small amount of code goes a long way)
• "Get the job done" design philosophy

[prev] [top] [next]

Domain-Oriented Programming (DOP) Languages

• Programming Languages that:

Offer one or more strong computational metaphors that allow domain concepts to be
readily modeled. DOP languages have simple syntax...They often achieve their
expressiveness by a strict uniformity of operations and types. DOP languages allow
the domain developer to map domain abstractions into DOP abstractions. - Thomas
and Barry (OOPSLA'03)

• Examples: Lisp, APL, Smalltalk, and (of course)... Lua.

[prev] [top] [next]

Example 1: Student Grading Using Lua Syntax

• The easiest (and usually best!) way to build a DSL with Lua is to use Lua's syntax and some
custom code.

• Grades for students: programs I had didn't do what I wanted.
• Concepts: student, Course, Assignment, Group, Grade
• Knowledge Engineering is important in DSLs, even simple ones.

• Grade versus GradeSet problem.

[prev] [top] [next]

Example 1: Student Grading Using Lua Syntax

Student ("HFred", "Fred Hamster", "f_hamster@pacific.edu")
...
Course("Comp141", "Programming Languages")
Group("Homework", 40)
Group("Tests", 40)
Group("Project" 20)
Assignment {name="HW01", desc="Lexical Analyzer",
 due="23 Sept", points=20}

GradeSet {
{"COMP141", "HW01", "HW02", }
-- ------- ---- ----
{"HFred", 19, 10, }
{"CMiko", 17, 12, }
...
}

[prev] [top] [next]

Example 2: Poetry Composer Using gsub

• Useful technique for bridging existing languages or other special cases.
• Powerful and fast but also difficult to write/read
• Hard to do good error messages.

• Used to read and existing description system for words and poem patterns.
• Concepts: Word, Syllable count, Concept, Rhyme, Phrase, Poem
• Structures: concept groups, concept matching, phrase, poem

• Implementation Issues: Break into bite-sized pieces first.
• Declarations, statements, lines, whatever works.

• Iterative application of gsub is as powerful as a grammar-based system.

[prev] [top] [next]

Example 2: Poetry Composer Using gsub

--- Words
tree 1 noun xee
crushing 2 ing xing
coding 2 ing verb xing
-- Concepts/Ideas
POS -> noun adjective
adjective -> ing
RHYME -> xee xing
-- Poem
: POEM haikulike
: 5 (noun) (ing verb) (noun)
: 7 (noun) (verb) (prep) (article) (noun)
: 5 (noun) (verb) *
: END
: COMPOSE 100 haikulike

[prev] [top] [next]

Example 2: Poetry Composer Using gsub

Lua writing starts
Fingers fly across the keys

Elegance lives on

[prev] [top] [next]

Example 3: Research Prototype Using Parser

• Traditional language implementation works pretty well too.
• Lexical scanner, Parser (Top-down), Object-based parse tree.

• Prototype of high-level class-focused language.
• Domain is object-oriented design.
• Code defines how classes interact, not objects and methods.
• Concepts: class, list, value, address/path, others?
• Structures: subclassing, tree-like class structure, paths.

[prev] [top] [next]

Example 3: Research Prototype using Parser

define ParentChild($parent, $plist, $child, $parref)
List($parent.$children)
Value($child.$parref)
Action($child.$parref.onUnset,apply(self.value $plist),
.remove, self)
Action($child.$parref.onSet,apply(self.value,$plist),
.add, self)
end

class(Book)
class(Shelf)
List(Book.authors, String)
Value(Book.title, String)
Value(Book.location, Shelf)
ParentChild(Shelf.contents, Book.location)

[prev] [top]

Conclusions

• DSLs are good.
• DOP Languages are the best choice for building DSLs.
• Lua is a DOP Language

• Know the Audience, know the domain.
• Start with Lua syntax for prototyping, stay with it if possible!
• ...but Lua can take you farther if you need it.

