
Exception patterns in Lua

John Belmonte Lua Workshop 2006

Overview

● A reintroduction to exceptions
● Lua and exceptions
● A simple try-except construct
● Custom error objects

What problem do
exceptions solve?

● Reasonable program behavior despite lack
of error handling

● Error handling only where needed
● Consistency in raising and handling
● Simpler API's

(Good summary at http://digitalmars.com/d/errors.html)

Exception Concepts

● Raise
● Catch
● Re-raise
● Selective catch

– can apply to any catch scenario
– requires classification of errors

● Exceptions are part of an API

Usage Scenarios

● Quick scripting
– let everything go unhandled

● Catching errors for:
– suppression
– alternate code path
– cleanup (often re-raising)
– retry
– transformation (always re-raising)

● add context
● hide implementation

What should be an error?

● Obvious error: invalid arguments
● Usually not an error: string match

failure
● What about file operation failures

(open, delete, rename)?
● Criteria: If caller usually can't deal with

the situation locally, it's an error
– i.e. errors usually propagate up two or

more stack frames

Lua and exceptions

● Raise with error(), assert(), lua_error()
● Catch with pcall()
● Implemented with C longjmp()
● Error object not limited to strings
● No try-except construct

Usage in core and
standard library

● Exceptions mainly used for obvious
programming errors
– parse errors
– type errors
– invalid function arguments

● Notable departures: require(), dofile()
● Exclusively string error objects

The nil-error protocol

● On error, function returns [nil, error
message] tuple

● Made popular by Lua standard libs
● Issues

– not checking can result in delayed,
secondary error

– what if nil is a valid output?
● Can use assert() to convert to

exception

A simple try-except
construct

● Rationale
– useful
– familiar
– encourages use of exceptions

● Requirements
– usable without Lua changes
– can be nested

Try-except definition

● try(f, catch_f)
– Executes function f, and if an exception

results then catch_f is called with the
error object.

● Differs from xpcall()
– propagates exceptions rather than

returning nil-error
– error handler supports nested errors

Try-except implementation
and usage

function try(f, catch_f)
 local status, exception = pcall(f)
 if not status then
 catch_f(exception)
 end
end

try(function()
 -- Try block
 --
end, function(e)
 -- Except block. E.g.:
 -- Use e for conditional catch
 -- Re-raise with error(e)
end)

Try-except issues

● Slightly verbose
– use token filter: $try ... $catch(e) ... $end

● Functional implementation doesn't
support direct return from try/catch
– native implementation would solve this

● Coroutine yield cannot be used within a
pcall
– copcall() is a workaround

● Add finally block?
– not as significant as for C
– D's “scope hook” concept is better

Custom exception objects

error({code=121})

● What's wrong with strings?
– selective catch is fragile at best

● Tables as errors
– positive error identity
– can attach arbitrary context

● Classes as errors
– can employ inheritance testing

Sample error hierarchy

Excerpt from Python's built-in hierarchy:

Exception
 StandardError
 ArithmeticError
 FloatingPointError
 OverflowError
 ZeroDivisionError
 AssertionError
 ImportError
 KeyboardInterrupt
 RuntimeError
 NotImplementedError
 SyntaxError
 TypeError
 ValueError

Uncaught table

> error({code=121})
(error object is not a string)

● In the dark if table object is uncaught
– what is the error?
– where did it come from?

● Call stack should be displayed
regardless of error type
– lua.c should call tostring() on error objects

● All exceptions should have human-
readable message

A better error object

● Set __tostring hook
● Make reference available

_exception_mt = { __tostring =
 function(e) return 'ERROR: '..e.msg end }
SomethingBad = {code=121, msg = 'Oops' }
setmetatable(SomethingBad, _exception_mt)

● Then, with patched lua.c:

> error(SomethingBad)
ERROR: Oops
stack traceback:
 [C]: in function 'error'
 ...

Still missing
file and line

number!

How error locations are
conveyed in Lua

● Error system does not have concept of
error location

● Convention is to pre-pend location to
error string

● error() does this for you
● ... but only for string exceptions

Error location fix

● Ideal: lua_error() associates location
with error object
– possible efficiency concerns

● Compromise: error() sets location
directly on object when it's a table
– prototyped, works well

Conclusions

● Throw exceptions in situations which
usually can't be handled locally by
parent stack frame

● Use try-except construct for exception
handling

● Throw tables instead of strings
● Enumerate errors as part of API
● Fixing pcall/coroutine problem is

important
● Standard interface for inheritance

testing would be useful

Resources

● See presentation source for ample
notes, bonus slides

● Power patch for custom error object
support coming soon

