
Wim Couwenberg

Simulating complex systems with Lua

Simulating Complex Systems September 3, 20062

What is this talk about?

 Copier/printer is built up of many parts
 Scan engine
 Print engine
 Print file interpreters (PCL, PS, …)
 Local user interface
 Controller

 Different hardware platforms
 Intel
 ARM
 ASIC/FPGA

 Slow (cheap!) connections between these parts
 How to predict behaviour?

Simulating Complex Systems September 3, 20063

A quick experiment with Lua…

 Use Lua to simulate everything
 All processing is done by “scriptlets”

 Scriptlets are just functions or script files executing in
separate coroutines

 The main simulator loop runs a scriptlet scheduler

 Scriptlets can post timed events
 Scriptlets can wait for events (yield)
 Shared resources are modeled on top of events

 Semaphore
 Processor (process for X secs. with Y% load)
 I/O (limited bandwidth)

 Time is “virtual”: a numeric property (ordering) of
events

Simulating Complex Systems September 3, 20064

A simple example

 Spawn server and client scriptlets
 Scriptlets produce csv logging (easy visualization)

-- load simulation module
local sim = require “sim”

-- schedule server scriptlet to run at time 0
sim.spawn(0, “server”, “server.lua”)

-- schedule 3 clients with different arguments
sim.spawn(10, “client1”, “client.lua”, 120)
sim.spawn(15, “client2”, “client.lua”, 310)
sim.spawn(17, “client3”, “client.lua”, 225)

-- run the simulation
sim.run()

Simulating Complex Systems September 3, 20065

A simple example (2)

Simulating Complex Systems September 3, 20066

Events & scheduling

event = {
 time = scheduled time (can be infinite),
 thread = scriptlet that posted event,
}

events = least time in first out queue (heap)

function sim.getevent()
 return coroutine.yield()
end

function sim.run()
 for event in pop(events) do
 sim.time = max(sim.time, event.time)
 coroutine.resume(event.thread, event)
 end
end

Simulating Complex Systems September 3, 20067

Applications of event scheduling

 sim.time == infinite indicates a deadlock!
 Time of scheduled event can be changed in queue
 Example: “semaphore”

 “Release” up to n events when semaphore count
increases by n

 Release means: set event time from infinite (blocking) to
current simulator time

 Example: scriptlets sharing an “I/O channel”
 The more traffic, the longer I/O events take
 Event times are updated when I/O events start or expire

 Example: “processor” load shared among scriptlets
 Events take longer to “complete” when total load > 100%
 Event times are updated when load changes

Simulating Complex Systems September 3, 20068

Example: semaphore

function sem:lock()
 while self.count == 0 do
 local event = sim.schedule(infinite)
 self:pushevent(event)
 sim.getevent()
 end
 self.count = self.count - 1
end

function sem:unlock(n)
 self.count = self.count + n
 for event in self:popevents(n) do
 sim.reschedule(event, sim.time)
 end
end

Simulating Complex Systems September 3, 20069

Did it work?

 Colleagues unfamiliar with Lua programmed
scriptlets in a matter of hours (this is also a
statement about people at Océ…) 

 Different disciplines (embedded, scanner,
controller) “explained” their fields of expertise by
developing scriptlet code together

 We were able to check theoretical discussions and
consequences for overall system timing using a
number of tiny but clever scriptlets

 And… we had a lot of fun doing it!

