
The Evolution of The Evolution of LuaLua

Waldemar Celes
Luiz Henrique de Figueiredo

Roberto Ierusalimschy

Lua Workshop 2006

The BeginningThe Beginning

Lua Workshop 2006

Data Entry ProgramsData Entry Programs

 1992: Tecgraf - partnership between PUC
and PETROBRAS (CENPES)

 Graphical data entry for several simulation
applications

d

Lua Workshop 2006

DEL - Data Entry LanguageDEL - Data Entry Language

:e gasket "gasket properties"
mat s # material
d f 0 # distance
y f 0 # settlement stress
t i 1 # facing type

d

 Form definition
parameter list
 types and default values

Lua Workshop 2006

DEL DEL limitationslimitations

 Input validation
 Conditional behavior
 Abstractions and basic arithmetic

:e gasket "gasket properties"
mat s # material
d f 0 # distance
y f 0 # settlement stress
t i 1 # facing type

:p gasket.m>30
gasket.m<3000
gasket.y>335.8
gasket.y<2576.8

d

Lua Workshop 2006

Programa Gráfico MestrePrograma Gráfico Mestre

 1993: another project with PETROBRAS
 configurable program to visualize geologic profiles

Lua Workshop 2006

SOLSOL
Simple Object LanguageSimple Object Language

 Language to describe structured data
not totally unlike XML
syntax inspired by BibTeX
type @track {x:number, y:number=23, z}

type @line {t:@track=@track{x=8}, z:number*}

-- creates an object 't1', of type `track’
t1 = @track {y=9, x=10, z="hi!"}

l = @line {t=@track{x=t1.y, y=t1.x}, z=[2,3,4] }

Lua Workshop 2006

SOL SOL limitationslimitations

 Stronger abstraction mechanisms
 Some procedural facilities

Lua Workshop 2006

1993: Lua is Born1993: Lua is Born

 Convergence of both languages
procedural paradigm
data-description mechanisms

 Powerful features
 function abstractions
 full arithmetic syntax

 Extensible extension language

Lua Workshop 2006

Lua Lua version version 1.01.0

 Called 1.0 a posteriori
 The simplest thing that could possibly work
 Standard implementation, with yacc/lex
 Requirements:

simple, portable, extensible, embedable, small

Lua Workshop 2006

Lua 1.1 (1994)Lua 1.1 (1994)

 Faster
 First public distribution

 ftp
 Free for academic uses, but not free for

comercial uses

Lua Workshop 2006

Lua 2Lua 2

 Lua 2.1 (Feb 1995) - 2.5 (Nov 1996)
 Free license
 Fallbacks

suport for OO programming
 Pattern matching

Lua 2.5
 CGILua

called HTMLLua (1995)

Lua Workshop 2006

International ExposureInternational Exposure

 First home page in 1995
http://www.inf.puc-rio.br/~roberto/lua

 e-mail contact with far-away users
 June 1996 - paper in S:P&E
 Dez 1996 - paper in Dr. Dobb's
 Beginning of 1997 - discussion list

end of 97 - more than 100 subscribers, should
we try a newsgroup?

Lua Workshop 2006

Lua 3Lua 3

 Lua 3.0 (July 1997) - Lua 3.2 (July 1999)
 1998, Lua logo
 1998, Cameron Laird wrote in SunWorld:

Its user base is also small; there might be only a few tens
of thousands of Lua programmers in the world. They're
very fond of this language, though, and the imminent
explosion of ubiquitous embedded processing (computers
in your car, in your plumbing, and in your kitchen
appliances) can only work in favor of Lua.

Lua Workshop 2006

Lua 4Lua 4

 Lua 4.0 (Nov 2000 - March 2003)
 New API with lua_State
 Several appearances in Brazilian press
 March 2001, new site: www.lua.org

 thanks to Jim Mathies
 Few months later, users site: lua-users.org
 After two years, a single release 4.0.1

 less than 10 bugs
 Several plans for 4.1

Lua Workshop 2006

Lua 5Lua 5

 5.0 (April 2003), 5.1 (Feb 2006)
 Coroutines, lexical scoping
 Register-based virtual machine
 New implementation for tables
 Modules
 Incremental garbage-collector

Lua Workshop 2006

Another View of Lua EvolutionAnother View of Lua Evolution

Lua Workshop 2006

Evolution: PortabilityEvolution: Portability

 Stick to ANSI
hard decision when we started
Sun compiler was K&R

 Much improved
 first versions do not compile on Linux ;)

 Closely following ANSI C
Lua and C compilers

Lua Workshop 2006

Evolution: PortabilityEvolution: Portability

 General move from conforming hosted
implementation to conforming freestanding
implementation (in the core)
no I/O in the core
no use of files in the core
user-provided memory-allocation mechanisms

Lua Workshop 2006

Evolution: PortabilityEvolution: Portability

 But: loadlib deeply supported
 Module system
 luaconf.h

 Use of vararg and structs in lua.h
only in restricted ways

Lua Workshop 2006

PortabilityPortability Evolution: Examples Evolution: Examples

 All kinds of problems with names
exp, size, Object,

 Warnings
no standard way to say "we know what we are

doing"
 Compiler writers as language designers

tmpnam in Linux, string functions in Windows

Lua Workshop 2006

Portability Evolution: ExamplesPortability Evolution: Examples

while(isalpha(*s++)) ...

The header <ctype.h> declares several functions useful for
classifying and mapping characters. In all cases the argument is an
int, the value of which shall be representable as an unsigned char
or shall equal the value of the macro EOF.

for (; p >= base_pointer; p--) ...

union of pointers x pointer to union

Lua Workshop 2006

Evolution: Evolution: EmbedabilityEmbedability

 Portability
 Freestanding implementation
 Weak references

non-lock references, weak tables
 Userdata

 from pointer to memory
 finalizers
 tags, metatables

 Independent states

Lua Workshop 2006

Evolution: SimplicityEvolution: Simplicity

 Runs against all other aspects
not always ;)

 Lua 1.1: API with 30 functions; 4000 lines of
code

 Lua 5.1: API with 79 (core) + 36 (auxlib)
functions; 12000 (core) + 5000 (libs) lines of
code
~3x (core) + 1 (libs)

Lua Workshop 2006

Evolution: SimplicityEvolution: Simplicity

/* Lua 1.1 */

int main (int argv, char **argc) {
 iolib_open();
 strlib_open();
 mathlib_open();
 lua_dofile(argv[1]);
 return 0;
}

Lua Workshop 2006

Evolution: SimplicityEvolution: Simplicity

/* Lua 5.1 */

int main (int argv, char **argc) {
 lua_State *L = luaL_newstate();
 luaL_openlibs(L);
 if (luaL_loadfile(L, argv[1]) ||
 lua_pcall(L, 0, 0, 0))
 fprintf(stderr, "error: %s\n",
 lua_tostring(L, -1));
 lua_close(L);
 return 0;
}

Lua Workshop 2006

Evolution: PerformanceEvolution: Performance

0.33.00.4Lua 5.0
0.33.30.4Lua 5.1

0.43.70.6Lua 4.0
0.53.50.7Lua 3.2
0.53.70.8Lua 3.1
0.53.80.7Lua 3.0
0.43.30.7Lua 2.5
0.54.40.8Lua 2.4

4.50.8Lua 2.2
4.10.8Lua 2.1
2.21.8Lua 1.1
2.21.8Lua 1.0

heapsortfibonaccisieveVersion

Lua Workshop 2006

Feature EvolutionFeature Evolution

Lua Workshop 2006

FunctionsFunctions

 First-class values since Lua 1.0
 But quite different from functions in Lua 5.1

Lua Workshop 2006

Functions in Lua 1.0Functions in Lua 1.0

 Function definition assigned at compile time
 Must be a global name
 Cannot print function values

print(a())
function a() end

print(a)
function a.x() end

Lua Workshop 2006

Functions in Lua 2.2Functions in Lua 2.2

 Function definition is an assignment
 Function "name" may be a field
 Sugar for methods

function a.x[10]:m()
end

Lua Workshop 2006

Functions in Lua 3Functions in Lua 3

 Lua 3.0: vararg functions
 Lua 3.0: types function and cfunction

unified
 Lua 3.1: anonymous functions with upvalues!

function createK (x)
 return function ()
 return %x
 end
end

Lua Workshop 2006

Functions in Lua 5Functions in Lua 5

 Full lexical scoping

 Proper tail calls
 Lua 5.1: new vararg expression

function createCount (x)
 return function ()
 x = x + 1
 return x
 end
end

Lua Workshop 2006

Chunks and FunctionsChunks and Functions

 In Lua 2.4, chunks are functions internally
debug interface could capture them illegally

 In Lua 2.5, chunks can return values
 In Lua 3.1, chunks are quite regular functions

nesting
 local variables

 In Lua 5.0, "do" becomes "load" + "call"
chunks are vararg functions

Lua Workshop 2006

ErrorError MessagesMessages function f(x)
 return x + y
end

print(f(10))

Lua 1.0: without debug pragma
lua: unexpected type at conversion to number

Lua Workshop 2006

ErrorError MessagesMessages $debug
function f(x)
 return x + y
end

print(f(10))

Lua 1.0: with debug pragma
lua: unexpected type at conversion to number
 in statement begining at line 3
 in function "f" of file "a"
 active stack
 -> function "f" of file "a"

Lua Workshop 2006

ErrorError MessagesMessages $debug
function f(x)
 return x + y
end

print(f(10))

Lua 2.1:
lua: unexpected type at conversion to number
 active stack:
 -> function "f" at file "a":3

(Without pragma it is similar to Lua 1)

Lua Workshop 2006

ErrorError MessagesMessages $debug
function f(x)
 return x + y
end

print(f(10))

Lua 3.0:
lua: unexpected type at arithmetic operation
Active Stack:
 function f at line 3 [in file a]
 main of a at line 6

(“at line” only with pragmas)

Lua Workshop 2006

ErrorError MessagesMessages function f(x)
 return x + y
end

print(f(10))

Lua 4.0: no more pragmas
a: attempt to perform arithmetic on global `y'
 (a nil value)
stack traceback:
 1: function `f' at line 2 [file `a']
 2: main of file `a' at line 5

Lua Workshop 2006

ErrorError MessagesMessages function f(x)
 return x + y
end

print(f(10))

Lua 5.0:
a:2: attempt to perform arithmetic
 on global `y' (a nil value)
stack traceback:
 a:2: in function `f'
 a:5: in main chunk
 [C]: ?

Lua Workshop 2006

What are the costs of a feature?What are the costs of a feature?

Implementation is a small fraction
of the cost of a new feature!

Lua Workshop 2006

What are the costs of a feature?What are the costs of a feature?

 Documentation
simple and precise description
 independent of implementation

 Testing and maintenance
how to test all aspects
more things to fail now and later

Lua Workshop 2006

What are the costs of a feature?What are the costs of a feature?

 Conceptual integrity
how the feature interacts with other features
some features demand new facilities

 Impact on design space for future evolution
a poor feature may stand in the way of a better

one
 Impact on alternative implementations

Lua Workshop 2006

Example: What is the cost ofExample: What is the cost of
MultipleMultiple Returns?Returns?
 Documentation mostly about interation with

other facilities
 “non local” documentation

 Conceptual integrity
 took long time to current design

 f(g()) in 1.0-1.1; back in Lua 4.0
 {f()} only in 5.0!

Lua Workshop 2006

Example: What is the cost ofExample: What is the cost of
MultipleMultiple Returns?Returns?
 Impact on design space for future evolution

 int return in C functions
multiple values in resume-yield

 Impact on alternative implementations
 function stack size cannot be statically computed
 tail-call implementation
 implementations in virtual machines (e.g., JVM)

Lua Workshop 2006

Example:Example: What is the cost ofWhat is the cost of
Incremental GC?Incremental GC?
 Practically no impact on documentation
 HUGE impact on testing
 Small impact on design space for future

evolution
 finalizers, weak tables

 Big impact on alternative implementations
several assumptions spread around the code

Lua Workshop 2006

Example:Example: What is the cost ofWhat is the cost of
strsubstrsub??
 Innocent-looking function in Lua 1.0
 Big impact on conceptual integrity

particular way of interpreting string indices
 Set the tone for all other string-manipulation

functions
 string.find(s, "p") x
string.match(s, "()p()")

 Maybe Icon style would be better?

Lua Workshop 2006

Lua NowLua Now
 Thirteen years
 More and more stable

 less and less unstable
 Still the same requirements

simplicity, portability, embeadability, smallness
 Only language developed outside an

industrialised country to achieve global
relevance

Lua Workshop 2006

BooksBooks
Lua 5.1 Reference Manual
by Roberto Ierusalimschy,
Luiz H. de Figueiredo,
Waldemar Celes.
Lua.org (2006)

Programming in Lua
by Roberto Ierusalimschy.
Lua.org (2006)

Game Development with Lua
by Paul Schuytema, Mark Manyen.
Charles River (2005)

Lua Workshop 2006

BooksBooks

Beginning Lua Programming
by Kurt Jung and Aaron Brown.
Wrox (Feb 5, 2007)

Programmieren mit Lua
by Roberto Ierusalimschy.
Open Souce Press (Set 2006)

Lua Workshop 2006

www.lua.org

