
Distributed Programming
in Lua

Noemi Rodriguez
PUC-Rio

Distributed Programming

• shift to wide area
– loose-coupling
– asynchronism
– highly dynamic execution conditions

• different settings require different
paradigms and abstractions

how can programming language features help?

ALua - Asynchronous Lua

• asynchronism
– wide area computing
alua.send (dest, <string_with_chunk_of_code>)

• arrival of message is an event
• handler executes chunk of code

ALua

alua.send(B, [[send(A, “print(‘.. c..’)”)]])
A B

[[send(A, “print(‘.. c..’)”)]]

send(A, “print(‘.. c..’)”)

c

“print(10)”

print(10)

10

alua.inf.puc-rio.br

alua programming model

• compatible with interpreted languages
– highly flexible but not very secure

• single-threaded
– each event is handled to completion

example: Job Management
with alua

• local resource manager for Globus
• direct use of ALua
• allocation, deallocation, and migration(?)
• system aspects

– CPU and memory variability
• application aspects

– bad parameters or starting points

 importance of interactivity

programming models

• ALua: low abstraction level
– programs as state machines
– lots of string manipulation

• many settings require more support...

higher-level Abstractions:
Classification

• libraries
– awkward APIs
– freely combined in applications

• specific languages
– easier to use
– support for specific paradigms

• reflection and extension
– combined advantages...

ALua & abstractions

• DALua - distributed algorithms
• LuaRPC
• LuaTS - tuple space
• LuaPS - publish/subscribe
• ...

 ease of integration: research & education

important features of
lua

• functions as first-class values and other functional mechanisms
– closures

• reflexive mechanisms allow us to redefine language behavior in
case of exceptions

– invocation of non-existing methods
• cooperative concurrency (coroutines)

→ high level abstractions can be easily built

DALua

• distributed algorithms library
– very near to basic model
– important as teaching tool

• DA classically described as a series of
responses to events

example: classical Ricart&Agrawala algorithm for
mutual exclusion

on request(ts, id) do
 ...
on oktogo do
 ...

function mutex.enterCS (func)
 logicalclock = logicalclock + 1
 waiting = true
 local thisreq = { ["timestamp"] = logicalclock,
 ["proc"] = ad.self() }
 local procs = dalua.processes ("myapp")
 dalua.send(procs, "mutex.request", thisreq)
 thisreq.pending = table.getn(procs)
 thisreq.critical_section = func
 table.insert(requests, thisreq)
end

example: mutual exlusion
classical Ricart&Agrawala

function mutex.request (newreq)
 logicalclock = max(logicalclock, newreq.timestamp) + 1
 if busy then table.insert(deferred, newreq)
 elseif waiting then
 -- check if new request was issued earlier
 if haspriority(newreq, requests[1]) then
 dalua.send(newreq.proc, "mutex.oktogo", ad.self(),
 newreq.timestamp, logicalclock)
 else
 table.insert(deferred, newreq)
 end
 else -- not interested in critical region
 dalua.send(newreq.proc, "mutex.oktogo", ad.self(),
 newreq.timestamp, logicalclock)
 end
end

example: mutual exlusion
classical Ricart&Agrawala

RPC

• RPC is often more comfortable than
responses to events
– critics

• LuaRPC
– how to combine RPC view with asynchronism
– and with "single-threadedness"

– asynchronous invocations as a basis

LuaRPC - asynchronous calls

function request()
 local acc, repl = 0, 0
 local peers = dalua.processes("myapp")
 local expected = table.getn(peers)
 function avrg (val)
 repl = repl+1
 acc = acc + val
 if (repl==expected) then print ("Current Value: ", acc/repl)
 end
 end
 for _,p in ipairs (peers) do
 luarpc.async(p, "currValue", avrg)()
 end
end

 closures help deal with "unwinding the stack" problem
 async fcts are 1st class as any other fct value

LuaRPC

• still, sometimes it is nice to work with
synchronous view
– synchronous RPC
– futures

f = luarpc.sync(p, callback)
f(arg1, arg2)

Synchronous Invocations

• "blocking" semantics should allow
incoming messages

• use of coroutines:
– each new invocation is executed in a new

coroutine
– sync call invokes asynchronously and

yields

ALua with sync calls

• possible inconsistent handling of globals but only at
explicit points
– investigation of compatible synchonization scheme

combining paradigms

• one same application can freely use different
interaction paradigms
– p/s, RPC, messages, ...
– example: distributed ME algorithm can be used as

part of RP implementation
• language features allow all of them to be

seamlessly integrated into the language

