The Aranha Web Application Platform

Daniel Silverstone

dsilvers@digital-scurf.org
IRC: Freenode//Kinnison

What is Aranha?

* Dynamic Web application platform
* Comprising a Lua VM with changes...
* ...and significant support code

Who is involved?

e Daniel Silverstone

e Rob Kendrick
* Rici1 Lake (indirectly)

The history of Aranha

 LHC
* ISAPI/Lua (proot of concept)

* Aranha 1 (abandoned)
* Aranha 2 (1n progress)

LHC?

* The Lua Hypertext Compiler

* Simple template interpolation

* Produced static content from the
command line

* Lua 3.2 based, no VM changes

ISAPI/Lua

* LHC's content generator with an
ISAPI engine

* Generated content each request

* PostgreSQL binding

*LLua 4.0, no VM changes

Aranha 1

* Further modified LHC generator

* FastCGl for portability to non-
Zeus webserver

* Each request had own pre-

prepared state
* Lua 5.0 (minor VM changes)

Aranha 1 continued

* [ts own module loader

* Modular, libdbi binding among
others

* Slightly improved interpolation
over ISAPI/Lua

* Clever process model of 1ts own

It worked, so why fix it?

* The “1improved” interpolation
was error prone

* The codebase was messy

* Primary content generator 1s now
ancient.

* Incompatible with 3" party
modules

Aranha 2

* Ground-up rewrite with Lua 5.1

* Class system provided as
standard

* Improved diverter

* Application oriented core with
simple page-orientation
compatibility layer

Aranha 2 continued

* Module system to support Lua).1
package protocol

* Supports command-line running

* Table comprehensions and other
VM changes from Rici Lake

* Documentation strings

The Aranha diverter

* Based on M4's diverter concept

* Used to accumulate strings for
various reasons.

e Can be used for HTML, SQL,
any text-based stuft.

* Built into the parser, with a small
amount of support code around 1t

The diverter continued

e divert()

* _verbatimdivertedstring()
* _ divertedstring()

e undivert()

* string.addformat()

Diverter syntax

e >>Hello World<<
>>Hello [namel<<

>>Hello Iname

Hl<<

That syntax looks very odd
* Consider the following HTML.:

<table>
<tr><th>Name</th><th>Age</th></tr>
<<for name, age in pairs(people) do>>
<tr><td>|name#H|</td><td>| format_age(age)#H|</td></tr>
<<end>>

</table>

How is that compiled?

* Aranha always compiles your
pages as bytecode

* Thus HTML with embedded code
needs transforming somehow.

* This 1s done by wrapping with the
>> and << markers

So this is cleverer than Aranha 1?

e Consider the middle of the table
from the example:

<tr><td>|name#H|</td><td>|format age(age)#H|</td></tr>

* This 1s compiled to:

~_divertedstring(“<tr><td>%H</td><td>%H</td>", name,
format age(age))

* Thus expressions are dealt with
in-place rather than post-hoc.

Aranha documentation strings

* Syntax to allow tables and
functions to be documented

* Unobtrusive marker: -=-

* Detined syntax for the strings.
Similar to doxygen

* Support code built into Aranha to
retrieve and parse docstrings

An example docstring (rev)

Reverse the order of a list.

Reverse the order of numeric portion of \t and
return it as a new table.

@param t(table) numerically indexed table to
reverse
@return rev(table) numerically indexed table of
the values of \t 1n reverse

Aranha’'s class system

* Single inheritance model with
interfaces, abstract classes and
metamethod support.

* Classes have the ability to
provide _ 1ndex etc.

* Entire system 1s ca. 1200 lines of
well commented Lua code

What was changed in the VIM?

* Some small syntax changes to
make table constructor syntax
slightly more loose

e Addition of methindex for
OP_SELF

* Addition of __doc and __setdoc
for documentation aggregation

A very simple example class

Class "counter" {
function :Constructor(initial)
self.value = 1initial or ©
end

function :advance()
self.value = self.value + 1
return self.value

end

Other syntax changes for Aranha

* Aranha also incorporates various
syntax changes provided by
others:

— C/C++ style comments from Dan East
— Table comprehensions from Rici Lake
— For-loop augmentations from Ric1 Lake
— Satisfaction expressions from Rici Lake

Table comprehensions?

* An example of how Aranha 1sn't
afraid to take good 1deas from
other places.

* Consider this Python statement:
keys = [key for key in dictionary]

* [t'd be nice to be able to do
similar in Aranha, so we did...

The anatomy of a comprehension

* Valid only 1n table constructors

* They start like a for statement

* They have a yield section instead
of a code chunk

* Then they end

*E.g.

keys = { for key, in pairs(dictionary) yield key end }

What can you yield?

* Yields come in two forms
* List style yields:
yield <expr>[, <expr>]*
* Map style yields:
yield “[” <expr> “|” = <expr>
* Or 1n fact any valid table field

Limitiations of constructors

* Once you reach the 'yield'
keyword you can only yield one
or more (fixed number at compile
time) elements to the constructor

For loop extensions

* To get around that, we added the
following for loop extensions:
...when <expr>...
...while <expr>...
...for <another for loop>...
...andfor <another for loop>...

A couple of comprehensions

* Two simple examples:
{ for i = 1, #T when i%2 == 0 yield T[i] end }

{ for k,v 1in pairs(env)

when tonumber(v) ~= nil
yield [Kk] = v
end }

Satisfaction expressions

* A satisfaction 1s an expression of

the form:
<varlist> = <exprlist> satisfies <expr>

* The <varlist> can be used 1n the
new scope and the expression
evaluates to the value of <expr>

* Can be used with 1f/while/when

Very simple satisfaction example

it ok, message = some func() satisfies ok then
wahey (message)

else
darn(message)

end

Future development plans

* Integration with LuallT 1.1.2

* Caches

* Finish 5.1 pure module support

e Standard modules: DBI, MD35 etc

* F1x bugs

* Implement good suggestions
made to me today/tomorrow.

Any questions?

LT
s e, W
N AR Y
¢ W h
[1
il) |
(Y A
. P
"
. -

