
Interface specification & verification

Wim Couwenberg
Lua workshop 2011

2

Overview



About Océ


Component technology


Interface traces


Trace file analysis


Specification & verification

3

About Océ



Production printing in Color and B/W

4

About Océ



Founded 1877 in Venlo, The Netherlands


~20,000 staff worldwide


1,600 specialists at 10 R&D sites in nine countries


Active throughout printing system value chain


Worldwide distribution in ~100 countries


Total revenues 2010: EUR 2.7 billion


Became a Canon Group company in 2010


Aiming for global leadership in printing industry

www.oce.com

5

Component technology



Single PC distributed software (~50 processes)


Proprietary component technology


IDL similar to Corba and COM in XML format


basic types


structs and arrays


interfaces


Single server multiple clients per IDL file (“protocol”)


star topology


reference counted object lifetime


Targets different languages


C, C++, C#, Java, Python

6

Component technology

Process 1

Process 3Process 2

S

C
C

S

C

C

7

Interface traces



Each method call is a “send” and “reply” pair


send: object, method, in parameters


reply: out parameters, return value


Server and clients handle concurrent calls


Reference count is “just a call”


Each (binary) send and reply part is logged


only server side needed (star topology)


timestamp, connection, call id, binary data block


Logged trace file captures all interactions


uniform and complete traces


post mortem analysis

8

Interface traces

SC2C1

send: a.foo()

reply: a.foo()

send: b.bar()

reply: b.bar()

send: c.baz()

reply: c.baz()

 1 send a.foo
 2 send b.bar
 1 reply a.foo
 3 send c.baz
 2 reply b.bar
 3 reply c.baz

Trace file:

9

Trace file analysis

IDL
file

Trace
file

Decoder
(Lua)

Plug-in
(Lua)

10

Trace file analysis



Trace file decoder written in 100% Lua


Parses IDL file


Reads binary trace file entries (send and reply)


Demarshals each block and adds meta data


timestamp, connection, call id, object, method


struct field names, enum symbols


in/out and parameters with their names, return value


all relevant type information


Passes each block as a Lua table to a plug-in script


generic plug-in for human readable logging


generic plug-in to verify protocol compliance


specific plug-ins for specific analysis

11

Specification & verification



IDL can specify formal requirements in Lua snippets


Supported specifications


constructors for non interface types


constructors and destructors for interface types


pre and post conditions for interface methods


Only used for post mortem analysis


Verification done by a generic decoder plug-in script


parses IDL


generates verification code from collected snippets


checks all send and reply blocks


emits warnings or asserts on violations

12

Specification & verification



Basic type constructors, typedefs and enums
<integer name=“byte”>

<check>
-- byte value must be in range
assert(self >= 0 and self < 256,

“out of range [value=%d].”, self)
</check>

</integer>

<enum name=“model”>
<check>

warn(self ~= “oldtimer”, “deprecated”)
</check>
<item name=“oldtimer”/>
…

</enum>

13

Specification & verification



Basic type constructors, struct

<struct name=“rectangle”>
<check>

-- check top left and bottom right order
assert(left <= right and top <= bottom,

“wrong coordinates [%d,%d,%d,%d]”,
top, left, right, bottom)

</check>
<item name=“top” type=“integer”/>
<item name=“left” type=“integer”/>
<item name=“bottom” type=“integer”/>
<item name=“right” type=“integer”/>

</struct>

14

Specification & verification



Interface constructor & destructor

<interface name=“foo”>
<check type=“ctor”>

-- setup some state for this object
self = {

state = “disconnected”,
}

</check>
<check type=“dtor”>

-- must be disconnected
assert(self.state == “disconnected”,

“wrong state [state=%s]”, self.state)
</check>
…

</interface>

15

Specification & verification



Method pre and post conditions

<method name=“connect”>
<check type=“pre”>

-- must not be connected yet
assert(self.state == “disconnected”,

“wrong state [state=%s]”, self.state)
</check>
<check type=“post”>

-- set state to connected
self.state = “connected”

</check>
…

</method>

16

Specification & verification



Automatically verify test runs of nightly builds


Failed assertion also gives context of the failure


Refers to logging (call id) for further info

Failed assertion in foo dtor: wrong state…
[1438] in foo::remove_ref
[0010] foo created in bar::make_foo
[0001] bar created in bar::connect

17

	Interface specification & verification
	Overview
	About Océ
	About Océ
	Component technology
	Component technology
	Interface traces
	Interface traces
	Trace file analysis
	Trace file analysis
	Specification & verification
	Specification & verification
	Specification & verification
	Specification & verification
	Specification & verification
	Specification & verification
	Slide Number 17

