
    

Reflexis Flow – Agile through Lua

Lua Workshop 2011 / Switzerland

Ashwin Hirschi

These slides accompanied my live demo of Reflexis Flow.
To give you an idea of what I demoed, we added a handful of
extra slides as well as little annotations like these. Enjoy!



AgendaAgendaAgendaAgenda

Agile web development with Lua

TopicsTopicsTopicsTopics

Introduction

Model-driven development

Demonstrations

More about Flow

Powered by Lua

Closing remarks



AboutAboutAboutAbout usususus

 

WhoWhoWhoWho areareareare wewewewe????

a software company

based in the Netherlands

using Lua since 2002

Workshop 2006: Reflexis Lite

our focus: smart web applications

My Reflexis Lite talk in 2006 discussed our
Lua-driven desktop runtime for Windows.

Roberto wanted me to point out that I also wrote
the article “Traveling light, the Lua way”, that appeared
in IEEE Software, September 2007. So, there ;-).



OurOurOurOur platformplatformplatformplatform

 

ReflexisReflexisReflexisReflexis FlowFlowFlowFlow

Amodel-driven platform for...

   agile web application development.

Was created using Lua,

   and can be extended using Lua.

Initially, we created Flow to speed up the tedious bits of working on web
applications, so we could spend more time on the enjoyable/worthwhile tasks.

Nothing too fancy here... But the “model-driven” part
probably needs some explaining. So...



ModelModelModelModel----drivendrivendrivendriven developmentdevelopmentdevelopmentdevelopment

 

WhatWhatWhatWhat''''ssss thethethethe problemproblemproblemproblem????

software should be easier to create

software should be easier to change (later on)

software should be less buggy

software should be more secure (especially on the Web!)

software should match requirements better

While far from complete, I guess the message is clear.
If you don't recognise these points, you either are
very lucky, or need to get out more... Possibly both.



ModelModelModelModel----drivendrivendrivendriven developmentdevelopmentdevelopmentdevelopment

 

PossiblePossiblePossiblePossible solutionssolutionssolutionssolutions????

ask developers to stay late... (or type faster?)

get more developers on-board

outsource: find even more developers, elsewhere

get smarter IDE's (to do the typing?)

use a language closer to the problem domain

A lack of productivity is often seen as the cause of issues with software.
This naturally leads into the following...

I reckon most of these options look familiar to many...
The last option is the road less-travelled, and (therefore?)
the one taken by the model-driven software folks :-).



ModelModelModelModel----drivendrivendrivendriven developmentdevelopmentdevelopmentdevelopment

 

WhatWhatWhatWhat isisisis itititit????

building software by constructing models

model = description of solution (or problem)...

in a suitable domain language

Obviously, the trick lies in finding a suitable language. Unsurprisingly,
this is also where various model-driven approaches start to diverge.
As with more traditional programming languages, everyone has their
own ideas of what makes most sense in a given context.



DemonstrationDemonstrationDemonstrationDemonstration

A little demonstration

DemoDemoDemoDemo ####1111

calculating Body Mass Index (BMI)

purpose: showing Flow's basic model structure

preparations: none

Discussing various model-driven approaches would take too long
(and would probably bore people's socks off). Instead, I demonstrated
how you can create a small web application with our Flow platform.

And, yes, a BMI calculator is silly. But it's also a good example of
accepting some input, doing something and presenting the results.



DemonstrationDemonstrationDemonstrationDemonstration

step "Begin" {

  kind = "user",

  header = "Welcome",

  page = [[

Hello <b>Workshop</b>,

<p>

Let's talk about what we're building with <b>Lua</b>!

<p>

$[start] the calculator

<p>

$[search] the participants

  ]],

  parts = {

    start = {

      kind = "ui/button",

      caption = "Start",

      target = "bmi",

    },

    search = {

      kind = "ui/button",

      caption = "Search",

      target = "search",

    },

  },

  gates = {

    bmi = "AskData",

    search = "ShowParticipants",

  },

}

Here's the first *extra* slide. With the model fragment on the left
I created the webapp's Welcome page on the right. Yay?!



DemonstrationDemonstrationDemonstrationDemonstration

step "AskData" {

  kind = "user",

  header = "Your details",

  page = [[

Hello,

<p>what's your name?

<p>$[name]

<p>What's your height?

<p>$[height] <i>meters</i>

<p>What's your weight?

<p>$[weight] <i>kilograms</i>

<p>$[ok] $[cancel]

  ]],

  parts = {

    name = {

      kind = "ui/text",

      result = "person.name",

      explanation = "Please enter your name...",

    },

    height = {

      kind = "ui/number",

      result = "person.height",

      mode = "real",

    },

    weight = {

      kind = "ui/number",

      result = "person.weight",

      mode = "real",

    },

  },

  gates = {

    okay = "Calculate",

    cancel = "Begin",

  },

}

Here's the start of my demo BMI app. As you can see,
it's a simple form to ask the user to enter some data.
Note the mix of text and (floating/real) number inputs.

During the live demo I was a bit stumped that my height value was
rejected. I had forgotten that by default the number part accepts
only integer values. Adding the mode params fixed that.



DemonstrationDemonstrationDemonstrationDemonstration

step "Calculate" {

  kind = "server",

  page = [[ $[calc] ]],

  parts = {

    calc = {

      kind = "std/calculation",

      expression = "person.weight / person.height / person.height",

      result = "person.bmi",

    },

  },

  gates = {

    _default = "ShowBMI",

  },

}

This “server” step calculates the BMI and moves on.

The step does not produce an HTML page, but its
page property still indicates which parts should run.

By now it should be clear that gates connect the steps of our flow.
You can check this by examining the gates of the previous 2 steps.

Only one more step to add, to finish our first demo...



DemonstrationDemonstrationDemonstrationDemonstration

step "ShowBMI" {

  kind = "user",

  header = "Your BMI",

  page =[[ $[back]

Hello $[name],

<p>your Body Mass Index is... <b>$[bmi]</b>

$[gauge]

  ]],

  parts = {

    name = {

      kind = "ui/display",

      expression = "person.name",

    },

    bmi = {

      kind = "ui/display",

      expression = "person.bmi",

      handler = "real:dec=2",

    },

    gauge = {

      kind = "ggl/gauge",

      path = "person.bmi",

      label = "BMI",

      max_value = 40,

      major_ticks = { 0, 10, 20, 30, 40 },

      minor_ticks = 10,

      yellow = { 0, 18.5 },

      green = { 18.5, 25 },

      red = { 25, 40 },

    },

  },

  gates = {

    back = "Begin",

  },

}

Finally, the ShowBMI step renders this result page.
The nice dial thingy comes courtesy of Google.
The ggl/gauge part generates the necessary Javascript
to make the magic happen. Each aspect of the gauge
above is controlled by its part properties on the left.



DemonstrationDemonstrationDemonstrationDemonstration

A little demonstration

ObservationsObservationsObservationsObservations

we created it quickly

we tested it while creating it

we did not write any code

the flow definition/model is compact

each submit refreshes the entire page

At the risk of belabouring the point, this first demo shows
that with Flow you can create a working web application
within minutes and without writing any code.



DemonstrationDemonstrationDemonstrationDemonstration

Another demonstration

DemoDemoDemoDemo ####2222

searching the list of participants

purpose: showing asynchronous operation

preparations: a database table with the participants

Now, as browsers have moved on since 2004, in this second demo
we'll add an extra page to show some AJAX interaction.



DemonstrationDemonstrationDemonstrationDemonstration

step "ShowParticipants" {

  kind = "user",

  header = "The participants",

  page = [[

$[back]

Search $[search]

$[overview]

  ]],

  parts = {

    overview = {

      kind = "ui/data_grid",

      query = "select firstname, lastname, organisation

from participant",

      columns = { "name", "organisation" },

      item = "<td>#1# #2#</td><td>#3#</td>",

      filter = "search",

      search = "firstname lastname organisation",

    },

    search = {

      kind = "ui/typeahead",

      result = "search",

      associates = { "overview" },

      reset = "Clear",

    },

  },

  gates = {

    back = "Begin",

  },

}

This single step adds a complete view & search page to our demo.
Since its dynamic nature is lost in these static slides, I'll just say that
by clearing the search field the user can navigate all the entries,
while entering text automatically displays a filtered set.

Time to switch back to the original/regular slides...



ReflexisReflexisReflexisReflexis FlowFlowFlowFlow

 

BasicBasicBasicBasic modelmodelmodelmodel structurestructurestructurestructure

flows are applications

flows contain steps

steps are pages

gates connect steps

steps contain parts

parts are components

As this talk was presented during the Lua Workshop, I created
the demo flow using a text definition (and Lua syntax).
However, many simply build their apps using our browser-based
modeller (and don't get stumped by property defaults and such... ;-).



ReflexisReflexisReflexisReflexis FlowFlowFlowFlow

 

AboutAboutAboutAbout partspartspartsparts

are essentially components for webapps

can act both synchronously & asynchronously

come in many shapes & sizes

created by programmers in Lua, but...

everyone can use them (non-programmers included!)

I actually wrote the gauge part specifically for this presentation
to add something visual to the otherwise down-to-earth demo.

It took about an hour to create the basic version from scratch (though
afterwards I played around for another 2 hours to add the final touches).

Now it takes less than a minute to add a gauge to your own flows.



ReflexisReflexisReflexisReflexis FlowFlowFlowFlow

 

AdvantagesAdvantagesAdvantagesAdvantages ofofofof modelsmodelsmodelsmodels

you can discuss them

you can analyse them

you can visualise or transform them

you can still comprehend them if they grow

they help you reduce errors

they help you promote best practices

Note that flow definitions are basically simple data structures,
making the models easy to read and process in various ways.



ReflexisReflexisReflexisReflexis FlowFlowFlowFlow

The demo visualised

This flow graph was captured
from our flow modeller.

Graphs like these function
as “application maps”.

Our experience is that larger applications
generally lead to “maps with many islands”.

Therefore, our modeller uses “local graphs” to ease navigation.

Finally, our flow modeller is a flow application itself,
making it easy to adapt it to any special needs.



PoweredPoweredPoweredPowered bybybyby LuaLuaLuaLua

Flow borrows much of its power from Lua

Flow was developed entirely in Lua:

runtime section: approx. 2400 lines of code

modeltime section: approx. 1000 lines of code

tooling section: approx. 700 lines

Examples of Lua-based file formats:

flow definitions

session files

help files

configuration data

I'm not counting part code and
regular library stuff, obviously.



PoweredPoweredPoweredPowered bybybyby LuaLuaLuaLua

 

SomeSomeSomeSome casescasescasescases

handlers: adding custom validation or rendering

demo: add "real" handler to display BMI results

ui/text & ui/data_grid are handler-enabled parts

std/snippet: a mechanism to easily fill functional gaps

demo: add "remark" snippet to the same results page

snippet code runs in either present or process phase

An important aspect of any model-driven system is how it deals
with scenario's that it does not (yet) support. The handlers and
snippets I discussed here are handy “fallback mechanisms”.

A handler is a little piece of code that can tweak the behaviour of *existing* parts.
The ‘real’ handler below is already shown on the ShowBMI step slide, btw.

The snippet part enables you to insert some (Lua) code anywhere you want.
The ‘remark’ snippet is shown in detail on the next slide...



DemonstrationDemonstrationDemonstrationDemonstration

    remark = {

      kind = "std/snippet",

      code = [[

local bmi = tonumber(context.person.bmi)

if not bmi then return end

if bmi < 18.5 then

  print "Ummm... time for a snack?"

elseif bmi > 25 then

  print "No more cookies for you today!"

else

  print "Not bad. Keep it up!"

end

      ]],

      phase = "present",

    },

Adding this (Lua code) snippet...

...renders this remark (below the gauge) on the result page.

Though snippets are incredibly convenient, there's a clear risk of
relying on them too much. We often urge people to create their
own parts, since this raises overall quality & promotes re-use.



PoweredPoweredPoweredPowered bybybyby LuaLuaLuaLua

 

MoreMoreMoreMore casescasescasescases

Extend Flow by simply writing new parts... in Lua

demo: show & tweak ui/button part code

parts are self-describing

Lua to the rescue: dealing with SQLite

how to handle busy situations; wrapping the binding

SQL profiling; based on the same wrapper

Time ran out during my original presentation,
so I didn't get around to discussing these topics...

Having said that, the fact you can easily develop your
own powerful parts is the best Flow feature by far!

This ensures the modeller recognises the parts you add.



PoweredPoweredPoweredPowered bybybyby LuaLuaLuaLua

Lua enables us to interpret models

NoNoNoNo codecodecodecode generationgenerationgenerationgeneration

Reflexis Flow executes everything on the fly

all changes are reflected immediately

no tool chain overhead whatsoever

modeltime environment == runtime environment

keeps everything (very) light-weight

Code generation is another aspect that sets model-driven systems apart.
Though I believe most systems *do* generate code (targetting e.g. the Java
or .Net runtime), I'm very happy with our approach (for the reasons above).



ClosingClosingClosingClosing

The tip of the iceberg...

NotNotNotNot discusseddiscusseddiscusseddiscussed todaytodaytodaytoday

high-performance, extensible workflow engine

translation mechanism to ease localisation

integrated context-sensitive help

easy deployment, using manifests & packages

workers: for longer-running, asynchronous actions

starters: session authorisation logic

monitoring: RSS feeds to keep an eye on things

all tooling in Lua (of course ;-)

So much to say, so little time... ;-)



ClosingClosingClosingClosing

Bridging paradigms

ConclusionConclusionConclusionConclusion

Reflexis Flow brings 3 worlds together:

straight-forward procedural programming

convenience of component-based assemblage

model-driven systems for higher-level designs

When creating software, always consider alternatives to
producing yet more code (even if it's in Lua!).

In a nutshell: writing more & more code is not always the best way to move ahead.
Lua can help you fuse techniques in creative ways and get more out of less.
It helped us create Reflexis Flow. And now I can't imagine ever having to do without.



ClosingClosingClosingClosing

Questions?

ContactContactContactContact usususus

Arno Kusters (CEO)

Ashwin Hirschi (CTO)

still in Switzerland till Saturday (noon, probably)

email: questions@t reflexis.com

A fortnight down the road, it's safe to say we're not in Switzerland anymore...
But the email address is still valid, and your questions are just as welcome.



ClosingClosingClosingClosing

 

Thank you, Roberto,

and Luiz &Waldemar,

for giving us the gift of Lua!

The slide really says it all... Then again, some things are worth
repeating. It's one thing to be smart. But it's quite something
else to be smart *and* dedicated. I believe it's this combination
that has made Lua into the Great Piece Of Software it is today.
But, yeah, the slide says it all, really. So, THANK YOU!

The End. I hope you enjoyed the slides. -- Ashwin.


