
1

Description of a typical M2M chain:

•An asset is a machine which needs to communicate over the net, without human

operator intervention.

•There can be one or many assets; one of them used as a network gateway.

•Communication generally happens over the air, to preserve mobility and/or simplify

logistics.

•A backend keeps asset info always available, presents them to 3rd party services and

front-end.

•Frontend can be custom, but doesn’t have to: we provide a sane and functional default,

which only requires a bit of config.

This chain requires many very different skills: hardware, antennas, embedded software,

wireless network, server, UI, IT; extremely few companies will have all these skills at

once, and assembling them from many subcontractors is no piece of cake either.

2

Typical asset: valuable, in a remote position, needs to report events about itself

(including failures) and/or it environmnent to the company owning it.

3

We’re primarily a hardware company, we’ve plenty of HW options to offer: chips, PCB,

reference designs, PCCards, routers, programmable modems… from a few dozen $ to

many $100’s, depending on integration, volume, I/O, programmability, CPU…

4

We also offer a standard front-end, which can be heavily personalized. Based on

widgets, role-based views. Fits most B2B needs: alerts reporting, large fleets

management, data consolidation, provisionning, billing…

5

Anotherr view composed of standard widgets.

6

Example of a custom front-end, targetting non-professional operators (public streetlights

maintenance).

7

A home automation system front-end, handling home alarm, heating systems, etc.

8

Back to the global view. The backend here is quite simplified…

9

…but that’s our business, not the customer’s:

He’s got a physical asset, a frontend (UI and/or REST API), and the latter faithfully

represents the former. The rest ought to remain black magic.

10

Conversely, the situation is often simpler on the embedded side:

only one custom logical asset,

which is physically hosted on the gateway device’s CPU.

11

Only one custom logical asset, which is physically hosted on the device CPU.

12

13

What’s useful from the non-developer customer’s PoV.

14

What the developers see.

15

Basic architecture: two processes if possible, although we can run in a single one.

In any case, assets and agent only talk through a serialized RPC link. Keeps things

cleaner/clearer.

16

One process per asset if possible, it avoids parasitic interactions, discourages avoidable

couplings, and makes it easier to pinpoint bugs.

17

Assets don’t have to run on the same CPU, the serialized RPC can go over physical links.

18

19

The thread control and communication API.

20

Some simple examples of thread API events and calls.

21

On POSIX, need to justify why we didn’t reuse Copas, and why it wasn’t an instance of

the not-invented-here syndrome.

22

23

Many serialized communication channels; this is the dual of easy inter-thread

communications: it enforces proper structuring at the scale where it matters. It also

open interesting capabilities.

24

LTN12 really deserves more love than it gets. There are so many Lua libraries which

would be made more usable by being exposed as LTN12 filters, developers ought to

realize this.

25

26

There’s a continuum of options, from no development at all to completely developed

from scratch on independent hardware. An interesting sweet spot is Smart Automation,

only made possible because Lua makes code so flexible to write, use and move around.

27

28

A screenshot from the app definition pages of SmartAutomation (mapping Modbus

registers to sane variable names).

29

A screenshot from the app definition pages of SmartAutomation (describing the

monitorin policy on a variable).

30

Once the embedded application is deployed, it can be monitored through the usual

front-end.

31

These services are portable, and not embedded-specific. Should soon be offered under a

free and business-friendly license.

32

33

34

35

