

Description of a typical M2M chain:

•An asset is a machine which needs to communicate over the net, without human operator intervention.

•There can be one or many assets; one of them used as a network gateway.

•Communication generally happens over the air, to preserve mobility and/or simplify logistics.

•A backend keeps asset info always available, presents them to 3rd party services and front-end.

•Frontend can be custom, but doesn't have to: we provide a sane and functional default, which only requires a bit of config.

This chain requires many very different skills: hardware, antennas, embedded software, wireless network, server, UI, IT; extremely few companies will have all these skills at once, and assembling them from many subcontractors is no piece of cake either.

Typical asset: valuable, in a remote position, needs to report events about itself (including failures) and/or it environment to the company owning it.

We're primarily a hardware company, we've plenty of HW options to offer: chips, PCB, reference designs, PCCards, routers, programmable modems... from a few dozen \$ to many \$100's, depending on integration, volume, I/O, programmability, CPU...

WIRELESS AirVanta	ge 💿 Monitor	🖞 Deploy	Admin	7 Dashboards	≡ Logs	X Develop	📩 John Doe 🤊
Dashboard Applicatio	ins Inventory N	laintenance		Show: C	ompany 1 🗙 Con	npany 2 × Toulouse	Division 3 X +
		Systems	Gateways	Subscriptions Operat	ions		↑ Hide Charts
Deployment Status		Commun	ication Status		Recent O	perations	
	- 17	300-	thout Comm 📒 In M	aintenance 🔲 With Comm	Name	Comple	tion Complete Time 🔺
	(8%)	g 250-			Weekly Bu	lk Transfer 97/97	24/03/11 - 6:30
91 179 (34%) (80%)	In Inventory Activation In Pre-	ogress 0 160-			Small Bato	h Greation 15/15	20/03/11 - 14:22
(cons)		6 100- 50-			Remaining	Activations 58/61	21/03/11 - 21:05
	Total: 287	0	2/5/11 9/5/11	16/5/11 23/5/11 30/5/11 Weeka	Large Bate	h Transfer 110/11	0 15/03/11 - 6:10
Transfer Accept/	Reject Activate	Create New				ata Map Filter.	
System Name	Status	Labels	Gateway	Subscription Sol	tware Version	Creation Date	
System Name 1	Activated	Company 1, Toulo	Gateway 1		nitor_App_v2.5, Mo		
System Name 2	In Inventory	Toulouse	Gateway 2		nitor_App_v2.1	03/31/11 - 0	
System Name 3	Activated	Company 2	Gateway 3		nitor_App_v2.5	03/31/11 - 0	
System Name 4	Activated	Toulouse, Southern	Gateway 4	Subscription 4 Mo	nitor_App_v2.5	03/31/11 - 0	8:15
🗌 🙆 System Name 5	Activated	Division 3	Gateway 5	Subscription 5 Mo	nitor_App_v2.0, Mo	nitor 03/31/11 - 1	2:30
System Name 6	Activation In Progress	Division 3, Toulous	Gateway 6	Subscription 6 Mo	nitor_App_v2.0	03/31/11 - 0	2:00
🗌 🚳 System Name 7	Activated	Toulouse	Gateway 7	Subscription 7 Mo	nitor_App_v2.5	04/01/11 - 0	1:20
System Name 8	Activated	To Be Transferred	Gateway 8	Subscription 8 Mo	nitor_App_v2.1	04/01/11 - 0	1:25
🔲 😳 System Name 9	Activated	Company 2, Divisi	Gateway 9	Subscription 9 Mo	nitor_App_v2.5	04/01/11 - 0	1:30

We also offer a standard front-end, which can be heavily personalized. Based on widgets, role-based views. Fits most B2B needs: alerts reporting, large fleets management, data consolidation, provisionning, billing...

Anotherr view composed of standard widgets.

Example of a custom front-end, targetting non-professional operators (public streetlights maintenance).

A home automation system front-end, handling home alarm, heating systems, etc.

Back to the global view. The backend here is quite simplified...

...but that's our business, not the customer's:

He's got a physical asset, a frontend (UI and/or REST API), and the latter faithfully represents the former. The rest ought to remain black magic.

Conversely, the situation is often simpler on the embedded side:

only one custom logical asset,

which is physically hosted on the gateway device's CPU.

Only one custom logical asset, which is physically hosted on the device CPU.

Choosing Lua on the embedded side

Why not C?

- C is too low level, too long to debug, too hard to maintain
- Embedded C is not portable
- M2M changes faster than a C codebase could
- We're not in a hurry (we usually wait for GPRS!)
- We're not working on tiny µ-controllers anymore

What then?

- Python, Ruby, Javascript would have been fine for developers
- They're hard to port, resource-hungry
- Tedious to interface with C
- Only Lua and Scheme are technically realistic; Lua is way less scary
- It can still scare some middle-managers...

Sierra Wireless Proprietary and Confidential

January 21, 2010

13 SIERRA

What's useful from the non-developer customer's PoV.

What the developers see.

Basic architecture: two processes if possible, although we can run in a single one. In any case, assets and agent only talk through a serialized RPC link. Keeps things cleaner/clearer.

One process per asset if possible, it avoids parasitic interactions, discourages avoidable couplings, and makes it easier to pinpoint bugs.

Assets don't have to run on the same CPU, the serialized RPC can go over physical links.

The thread control and communication API.

Some simple examples of thread API events and calls.

On POSIX, need to justify why we didn't reuse Copas, and why it wasn't an instance of the not-invented-here syndrome.

Many serialized communication channels; this is the dual of easy inter-thread communications: it enforces proper structuring at the scale where it matters. It also open interesting capabilities.

LTN12 really deserves more love than it gets. There are so many Lua libraries which would be made more usable by being exposed as LTN12 filters, developers ought to realize this.

There's a continuum of options, from no development at all to completely developed from scratch on independent hardware. An interesting sweet spot is Smart Automation, only made possible because Lua makes code so flexible to write, use and move around.

e egei		Cotion	ponoy	1/00, 1		oring rules	0
Smart Automation Configurator							×
(1) (3	(3)	0	(5)	(3)	(7)		
General Settings Device Int	lerfaces Machine Compon	ents Data Editor	Embedded Logic	Communication Settings	Network Settings		2
CATEGORIES	Reference name IW_MBS2_1_7		Type Int				
Variables	TW_M052_1_0	temperature humidity	Int				
Local VD System	TW_MB52_1_9	numicity	Int				
Remote VO	TW_MB52_1_10		Int				
Applicative	IW_MBS2_1_11		Int				
Events System	IW_MBS2_1_12		Int				
Applicative			Int				
Commands System	IW_M852_1_13		Int				
Applicative	IW_M852_1_14 Q_M852_2_16		Boolean				
		fanCommand	Boolean				
	1_MBS2_2_16	fanState	Doolean				
						Cancel Save	Previous
Version 3.5.0						Cancel Save	Previous

A screenshot from the app definition pages of SmartAutomation (mapping Modbus registers to sane variable names).

MACHINE COMPONENTS	Modbus requests fo	r comp	onent ADAM						
serial2 (Modbus)	Name	Access	Object type	Starting @	Registers	Exchange policy	I/O Images type	٠	
RHT	MBS2.ADAM.measureFAN	Read	Coils	16	1				
ADAM Ethernet (Modbus TCP)	MBS2.ADAM.controlFAN	Read	Coils	16	1			Ð	
СОМ									
	Frame name		controlFAN Read Write						
	Access	-							
	Object type	● Coils ● Discrete Inputs ● Holding Registers ● Input Registers							
	Starting address	:	16	¢					
	Quantity of Registers		1	\$					
	Exchange policy	C	Periodic 60		sec 🗖				
		-) On Demand						
	I/O Images type		 Unsigned Word Signed Word 						
) Signed DWord	(Little endian)					
		C) Signed DWord	(Big endian)					

A screenshot from the app definition pages of SmartAutomation (describing the monitorin policy on a variable).

WIRELESS AirVant	age 💿 Monitor	🖞 Deploy	Admin	⑦ Dashboards	≣ Logs 🕅	Develop	📩 John Doe 👻
Dashboard Applicat	ions Inventory	Maintenance		Show:	Company 1 × Company 2	X Toulouse X	Division 3 × +
		Systems	Gateways	Subscriptions Oper	itions		+ Hide Charts
Deployment Status		Commun	nication Status		Recent Operation	ons	
	- 17	300 - W	íthout Comm 🧧 In M	laintenance 🔛 With Comm	Name	Completion	Complete Time 🔺
	Activated	g 250-			Weekly Bulk Trans	fer 97/97	24/03/11 - 6:30
91 179 (34%) (00%)	In Inventory Activation In F	rograss 0 150-			Small Batch Creat	ion 15/15	20/03/11 - 14:22
	Total: 287	60- 50-			Remaining Activat	ions 58/61	21/03/11 - 21:05
		0-	2/5/11 9/5/11	16/5/11 23/5/11 30/5/11 Weeks	Large Batch Trans	fer 110/110	15/03/11 - 6:10
Transfer	t/Reject	Create New			Data	Map Filtor	
	Status	Labels	Gateway	Subscription S	oftware Version	Greation Date	
System Name 1	Activated	Company 1, Toulo	Gateway 1		onitor_App_v2.5, Monitor	03/31/11 - 12:30	
System Name 2	In Inventory	Toulouse	Gateway 2		onitor_App_v2.1	03/31/11 - 02:00	
🗆 🤓 System Name 3	Activated	Company 2	Gateway 3	Subscription 3 N	onitor_App_v2.5	03/31/11 - 04:15	
🗌 😳 System Name 4	Activated	Toulouse, Southern	Gateway 4	Subscription 4 M	onitor_App_v2.5	03/31/11 - 08:15	
🗌 🙆 System Name 5	Activated	Division 3	Gateway 5	Subscription 5 N	onitor_App_v2.0, Monitor	03/31/11 - 12:30	
System Name 6	Activation In Progress	Division 3, Toulous	Gateway 6	Subscription 6 N	onitor_App_v2.0	03/31/11 - 02:00	
🗌 🕲 System Name 7	Activated	Toulouse	Gateway 7	Subscription 7 N	onitor_App_v2.5	04/01/11 - 01:20	
🗌 📵 System Name 8	Activated	To Be Transferred	Gateway 8	Subscription 8 N	onitor_App_v2.1	04/01/11 - 01:25	
🗌 🞯 System Name 9	Activated	Company 2, Divisi	Gateway 9	Subscription 9 N	onitor_App_v2.5	04/01/11 - 01:30	
		Division 3	Gateway 10	Subscription 10 N	onitor_App_v2.5	04/01/11 - 01:35	

Once the embedded application is deployed, it can be monitored through the usual front-end.

These services are portable, and not embedded-specific. Should soon be offered under a free and business-friendly license.

Development comfort

Some services ease the embedded-development-specific pains:

- Telnet (+ edition, auto-complete, etc. Can run over UART as well as TCP/IP).
- Interactive loading, reloading of source files over HTTP.
- Configurable logs.
- Can throw new inspection threads in, without breaking the app.
- More stuff coming with Eclipse support (cf. next presentation).

Sierra Wireless Proprietary and Confidential

January 21, 2010

age 33 SIERRA

How would we have done without Lua?

Abandoning portability isn't an option:

- We cannot give up smaller architectures
- We still want to move on to Linux, expect costs to eventually catch up

So, we would have gone with C:

- Callback-driven C, for small architectures support (unmaintainable)
- On Linux, either an extensive rewrite, or shared callback-driven codebase + porting layer, very hard to extend and maintain
- back to debugging malloc() and strcat()...

Bottom line: huge additional development times and costs

Supposing that we could have run Python / Ruby:

- Concurrency issues would have been much more of a concern
- Even if they come batteries included, those aren't the right batteries for M2M.

Sierra Wireless Proprietary and Confidential

January 21, 2010

Page 35