PONTrFl'cm UN\VEHSIDADE CATc')ucA
DO RIO DE JANEIRO

Some thorny points in the design of Lua:
a personal perspective

Roberto lerusalimschy

September 2011



the Devil is in the Details

0-based x 1-based arrays
List length

Bit library

Goto

Varargs

Automatic coercion

Numbers

Macros

2/31



Levels of Incompatibility

Not all incompatibilities are equal!

@ How frequently the incompatibility happens.
@ How easily we detect the incompatibility.

@ How easily we correct the incompatibility.

3/31



Detect Incompatibilities

PUC

RIO

compilation error

grep
run-time error

logical error

4/31



Correct Incompatibilities

@ extra definition/library
» change in a function
o fixed "macro replacement”
» change in an operator
@ local change
» change in a control structure
o global change
» change in a data structure

5/31



0-based x 1-based arrays

A continuous source of hatred towards Lua

All languages are 0-based; why does Lua have to be different?

6/31



Back in time . ..

@ Not all languages are 0-based: Icon, Fortran, AWK!, and Smalltalk
are 1-based; Snobol, Pascal, Modula, Modula-32, and Ada have
configurable bases.

@ Currently, many languages are 0-based due to influence from C.

> lIronically, none of them share the reason that made C 0-based (where
ale] means *(a+e)).

@ However, several other languages are 0-based without that influence.
Examples include Scheme, Oberon, and Haskell.

"When AWK creates an array for you, that array's indices are consecutive integers
starting at 1.

2Most examples are 1-based, but open arrays start at 0.
7/31



1-based arrays

@ Much more intuitive: first is 1st (not Oth).

» ISO-C: “E1[E2] designates the E2-th element of E1 (counting from
zero)."

Much easier for non programmers.

Easy for (good) programmers :)

Historical reason: Fortran used 1-based arrays, and most first users of
Lua had a Fortran background.

8/31



0-based arrays

@ More interesting mathematical properties.
o Example: hash3: (i%N)
@ Example: circular lists:

» 0O-based: (i + 1)%N, (i - 1)UN
» l-based: i%N + 1, (i - 2)%N + 1

3assuming a proper Y% operator

9/31



Antecedents

@ Most languages use a mod operator with not-so-good mathematical
properties.
» C strikes again?
» it does not seem to bother many people
@ Lua 1.1 used degrees for trigonometric functions.
» More intuitive for the “layman”.
» Bad mathematical properties.
» Changed (corrected?) to radians in Lua 5.0 (!)

10/31



Change from degrees to radians

@ Not too frequent
o Easy to detect
> grep
@ Easy to correct
» add conversion code

11/31



Change from 1-based to 0-based

@ All too frequent
@ Hard to detect
> logical errors
@ Hard to correct
» see mod example

12/31



Length of Lists

The crux of #t: Lua already has had several different mechanisms to
control the length of a list.

Probably the mechanism that changed most during Lua evolution.

@ intrinsic length

@ extrinsic length

13/31



Intrinsic Length

Depends only on the table itself.
Several more-or-less useful definitions.

» total number of elements
> larger numerical key
» minimal n such that ...

Often, what should be the length is far from obvious:

t = {[1000] = 1}
@ Fact: no intrinsic definition can handle lists with nils at the end.
t = {4, 5, 10, nil, nil}

14/31



Extrinsic Length

Does not depend only on the table itself.
May depend on the “history”: previous operations applied to the table
There may be an operation setn.

There should be an operation setn.
» so that we can clone a table

15/31



setn

@ Verbose and somewhat expensive.
> how to add an element in a list?

@ What to do with lists without a previous setn?
@ What about constructors?

@ From previous experience, an explicit use of t.n seems the best
approach.

16/31



bitlib

a most-wanted feature in Lua

far from straightforward

main problem: numbers in Lua are double
in particular, -1 is different from OxfFffffff

most bitwise operations not defined for non-natural numbers

17/31



bitlib

signed X unsigned results

> bit.not(0) == Oxffffffff versus bit.not(0) == -1
> in Lua 5.2, all results are unsigned

overflows in shift/rotate
» bit.lshift(x, 33)
» in Lua 5.2, all bits shifted out
@ negative shifts
» bit.lshift(x, -33)
» in Lua 5.2, shift in the opposite direction

future problem: 64-bit operations

18/31



goto

@ goto fits nicely with Lua philosophy of “mechanisms instead of
policies”
» very powerful mechanism
> easy to explain
@ allows the implementation of several mechanisms

» break, continue, redo, break with labels, continue with labels, state
machines, etc.

» Yes, even break is redundant

19/31



Isn’t goto evil?

@ "“The raptor fences aren't out are they?”
@ continuations are much worse

> basic idea: 1 = getlabel(), goto(1)
» dynamic and unrestricted goto
> labels are first-class values

@ yet nobody complains; it is “cool” to support continuations
@ is the problem with goto that they are too restricted?

@ Fact: more often than we want to admit, we resort to tricks to avoid
the use of a goto

20/31



Varargs

@ old-style vararg (pre-5.1): extra arguments collected in a table
» with an n field!
@ new-style vararg: expression ‘...’ results in all extra arguments
@ More efficient way to collect varargs
» mainly to pass them to another function

21/31



Unintended consequences

small overhead even for non-vararg functions

demonizing table creation
> suddenly, {...} becomes unacceptable

people want to use ... for everything

not a good contribution to #t

22/31



Automatic Coercion

o Very convenient to concatenate numbers with strings
» print("the value is " .. x)
@ Apparently convenient for things like print (fact(io.read()))

» function fact (n)

if n == 0 then return 1
else return n * fact(n - 1) end
end

@ Mostly useless for many other cases
> s it?

@ Somewhat complex

23/31



Automatic Coercion

May be removed in next version.

@ How frequent the incompatibility happens: should not be too
frequent, but who knows?

@ How easily we detect the incompatibility: medium difficulty. No
syntactic method, but usually the change should result in a run-time
error.

@ How easily we correct the incompatibility: very easy (add explicit
coercion).

24/31



Numbers

@ Lua started with floats as numbers
e Changed to double in version 3.1 (1998)
» need for 32 bits
» bold decision at that time
@ We will need 64-bit numbers; we must break the 53-bit barrier.
@ Three options (at least):

> a larger number type (e.g. long double)
» more than one underlying representation
» more than one number type

25/31



long double

@ elegant solution for 64-bit machines
@ too expensive for other architectures

» not that bad with 80-bit extended precision plus the NaN trick
» 80-bit floats give exactly 64 bits of mantissa

@ Not as portable as regular Lua code

26/31



Multiple underlying representations

@ example: LNUM
@ Main problem: no clear arithmetic model

@ Operation may give wrong result even when correct result is
representable

» 0.5 *x (2760 - 2)

27/31



Multiple number types

@ too complex
o different equal values:

> 4294967295 == 4294967295.0
> 4294967295 + 1 "= 4294967295.0 + 1

@ subtle compatibility problems

28/31



Macros

@ several nice solutions in the small: token filters, m4-style, etc.

@ main problem (seldom discussed): programming in the large

29/31



Macros in the large

modularization

» what is the scope of a macro?
» how to preload macros for a 1oad?

libraries providing macros

» same library can provide both macros and functions?
> how to “require” a library? (a predefined macro require?)

@ how to precompile code?
» should all macro libraries be present?
» do macros vanish in precompiled code?

@ error messages

30/31



the Deuvil is in the Details

or...

31/31



the Deuvil is in the Details

or... the color of the bike shed is not irrelevant PUC

(by Chun Yeug Cheng and Ka Fai Lee, student competition, Reinventing the Bike Shed)

31/31



