

LuaFlow, an open source
Openflow Controller

Raphael Amorim
raphael@atlantico.com.br

raphael.leite@hp.com

Renato Aguiar
aguiar_renato@atlantico.com.br

Workshop 2012

mailto:raphael@atlantico.com.br
mailto:raphael.leite@hp.com
mailto:aguiar_renato@atlantico.com.br

Talk Overview

• What is OpenFlow?
• How OpenFlow Works

• Lua Flow approach

• Demo
• Next steps

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Operating
System

Operating
System

Operating
System

Operating
System

Operating
System

Ap
p

Ap
p

Ap
p

3

Current Internet
Closed to Innovations in the Infrastructure

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Operating
System

Operating
System

Operating
System

Operating
System

Operating
System

Ap
p

Ap
p

Ap
p

Network Operating System

App App App

“Software Defined Networking” approach
to open it

App

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

App App

Simple Packet
Forwarding
Hardware Simple Packet

Forwarding
Hardware

Network Operating System

1. Open interface to hardware

3. Well-defined open API
2. At least one good operating system

Extensible, possibly open-source

The “Software-defined Network”

What is OpenFlow?

Short Story: OpenFlow is an API

• Control how packets are forwarded
• Make deployed networks programmable

– not just configurable

• Makes innovation easier
• Goal (experimenter’s perspective):

– No more special purpose test-beds
– Validate your experiments on deployed

hardware with real traffic at full line speed

How Does
OpenFlow Work?

Ethernet Switch

Data Path (Hardware)Data Path (Hardware)

Control PathControl PathControl Path (Software)Control Path (Software)

Data Path (Hardware)Data Path (Hardware)

Control PathControl Path OpenFlowOpenFlow

OpenFlow ControllerOpenFlow Controller

OpenFlow Protocol (SSL/TCP)

Controller

PC

Hardware
Layer

Software
Layer

Flow Table

MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
sport

TCP
dport Action

OpenFlow Firmware

5.6.7.8* port 1

port 4port 3port 2port 1

1.2.3.45.6.7.8

OpenFlow Flow Table Abstraction

OpenFlow Basics
Flow Table Entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields

+ mask what fields to match

Packet + byte counters

Examples
Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

00:20.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Forward

* * * * * * * * 22 drop

Examples
Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * 5.6.7.8 * * * port6

VLAN Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * vlan1 * * * * *

port6,
port7,
port9

00:1f..

OpenFlowSwitch.org

Controller

OpenFlow
Switch

PC

OpenFlow Usage
Dedicated OpenFlow Network

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol

Rule Action Statistics

Rule Action Statistics Rule Action Statistics

AliceBob

Experiment Design Decisions

• Forwarding logic (of course)
• Centralized vs. distributed control
• Fine vs. coarse grained rules

• Reactive vs. Proactive rule creation

• Likely more: open research area

Centralized vs Distributed
Control

Centralized Control

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Controller

Distributed Control

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Controller

Controller

Controller

Flow Routing vs. Aggregation
Both models are possible with OpenFlow

Flow-Based

• Every flow is individually
set up by controller

• Exact-match flow entries
• Flow table contains one

entry per flow
• Good for fine grain

control, e.g. campus
networks

 Aggregated

•One fow entry covers large
groups of fows
•Wildcard fow entries
•Flow table contains one entry
per category of fows
•Good for large number of
fows, e.g. backbone

Reactive vs. Proactive
Both models are possible with OpenFlow

Reactive

• First packet of flow
triggers controller to
insert flow entries

• Efficient use of flow
table

• Every flow incurs small
additional flow setup
time

• If control connection
lost, switch has limited
utility

Proactive

•Controller pre-populates fow
table in switch
•Zero additional fow setup
time
•Loss of control connection
does not disrupt traffic
•Essentially requires
aggregated (wildcard) rules

Examples of OpenFlow in Action

• VM migration across subnets
• Identity-Based QoS
• Energy-efficient data center network
• Network slicing
• Load balancing (DNS for instance)

Slide Credits

• Guido Appenzeller
• Nick McKeown
• Guru Parulkar

• Brandon Heller

• Rob Sherwood
• Lots of others

– (this slide was also stolen)

LuaFlow's approach

Official Open Source controllers

• NOX (Python/C)
– Mixed approach

• Beacon (Java)
– Focus in production environments
– Java “enterprise” code

• Trema (Ruby)
– Focus on prototyping testing

There's a strong correlation between the
length of code (number of tokens) and
programmers' productivity
e.g. Arc Programming Language [Paul Graham]

With smaller code:
- less time to write consistent code

- less chances for bugs

LuaFlow is specialized for programmers' productivity,
But not compromising efficiency

Write it short

... because we write it in C and Lua
(NOX written in C++ and Python, Beacon written
in Java)

This is the main reason!

Why LuaFlow

switches{
switch1 = {datapath_id = "00:00:00:00:00:00:00:01"},
switch2 = {datapath_id = "00:00:00:00:00:00:00:02"},
}

hosts{
host1 = {mac = "00:00:00:00:00:03"},
host2 = {mac = "00:00:00:00:00:04"},
}

-- Connections: Connection.switch[port#] = {switch=port#} or
-- Connection.switch[port#] = {host} or
-- Connection.host = {switch=port#}

Connection.host1 = { switch1 = 2}
Connection.host2 = { switch2 = 2}
Connection.switch1[1] = { switch2 = 1}

Network configuration file

NOX Python
inst.install_datapath_flow(
 dpid,
 extract_flow(packet),
 CACHE_TIMEOUT,
 openflow.OFP_FLOW_PERMANENT,
 [[openflow.OFPAT_OUTPUT, [0, prt[0]]]],
 bufid,
 openflow.OFP_DEFAULT_PRIORITY,
 inport,
 buf
)

Luaflow
add_simple_flow(dpid,
 flow,
 buffer_id,
 out_port,
 cache_timeout)

VS

Catching network events

function switch_ready(dpid, features)function switch_ready(dpid, features)
 print(">> New switch connected: " .. dpid)
 for k,v in pairs(features) do
 if k == "ports" then
 for i,p in ipairs(v) do
 print("Port " .. i)
 for k1,v1 in pairs(p) do
 print(k1, v1)
 end
 end
 else
 print(k, v)
 end
 end
end

Catching network events

function packet_in(dpid, buffer_id, flow)
 print(">> New packet (" .. buffer_id .. ") received from " .. dpid)
 local idle_timeout = 10
 local out_port = "all"
 add_simple_flow(dpid, flow, buffer_id, out_port, idle_timeout)
end

Base classes

● base_config.lua
● custom_topology_config.lua
● Topology.lua
● Port.lua
● Host.lua
● Switch.lua
● Link.lua
● Dijkstra.lua
● Controller.lua
● Flow.lua

Base classes
require "Topology"

myTopology = Topology:new{name = "mininet"}
myTopology:load_config("custom_topology_config.lua")

function switch_ready(dpid, features)
 print(">> New switch connected: " .. dpid)
 --TODO
 --Insert switch features into switch objects
end

function packet_in(dpid, buffer_id, flow)

 print(">> New packet received from " .. dpid)
 route = myTopology:getRoute(flow.dl_src, flow.dl_dst)
 ...
end

Demo

Next steps

• Pure lua controller using ffi/luajit

• More real-world scenarios

• Serious evaluation
• Open WRT Openflow wireless devices
• Community pull-requests

– Both ideas & Code

Questions?

Thank you all

	An Experimenter’s Guide to OpenFlow
	Talk Overview
	Slide 3
	Slide 4
	Slide 5
	What is OpenFlow?
	Short Story: OpenFlow is an API
	How Does OpenFlow Work?
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	OpenFlow Basics Flow Table Entries
	Examples
	Slide 15
	OpenFlow Usage Dedicated OpenFlow Network
	Experiment Design Decisions
	Centralized vs Distributed Control
	Flow Routing vs. Aggregation Both models are possible with OpenFlow
	Reactive vs. Proactive Both models are possible with OpenFlow
	Examples of OpenFlow in Action
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

