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What is Next?

● (No breakthroughs…)
● Libraries
● Unicode
● Integers
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Libraries

● LPeg
● struct/pack
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LPeg: What it is

● A library for pattern matching
● Goes from simple patterns to full grammars

"[a-z]+"

[[
Sexp <- atom / '(' sp Sexp* ')' sp
atom <- %w+ sp
sp   <- %s*
]]
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LPeg: Pros

● A good balance of expressiveness and 
complexity

● It may become a real differential for Lua
● More “Unicode-friendly”

● e.g., "—*"  (zero or more em dashes)
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LPeg: Cons

● Redundant with current pattern matching
● ideally we should deprecate current 

implementation, but transition is not always easy

● Not so small
● half the size of all current libraries together

● Not so mature
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Struct: What it is

● A library for packing/unpacking binary data in 
strings

s = struct.pack("iic", -24, 13, "x")

print(struct.unpack("iic", s))
  --> -24    13    x    10 
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Struct: Pros

● Small and simple
● Common in several scripting languages
● Wide range of uses

● binary data in sockets
● packing of data inside Lua
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Struct: Cons

● Conflict with future features
● e.g., packing/unpacking of C data outside Lua, in 

the host program
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Unicode

● What does it mean "support Unicode"?
● What encoding should Lua use?
● Do we need a new type for Unicode strings?

● (NO!!!)
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Unicode "Support"

● Lua has no intention of "supporting" Unicode
● for any reasonable definition of "support"

● Unicode is too complex for Lua
● too many tables, all huge

● But Lua can offer some very basic primitives 
to ease the coding of other libraries or simple 
tasks

● Mostly, operations to deal with the encoding 
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Encoding

● UTF-8 seems the clear winner
● UTF-16 has the same problems of UTF-8 

plus some others
● no easy access to i-th character

● UTF-8 can be smaller even for Asian 
languages
● e.g.: front page of Wikipedia Japan: 83 kB in 

UTF-8, 144 kB in UTF-16
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Encoding

Moreover, UTF-8 is much 
simpler for Lua :-)
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Lua and UTF-8

● Lua strings work naturally with UTF-8
● Literal strings can contain UTF-8 characters

● as long as text editor allows

● I/O works naturally with UTF-8
● provided OS does not interfere

● File names and the like depend on the OS
● Many string-manipulation functions do not work 

properly with UTF-8
● string.char, string.byte, string.upper, string.lower, 

string.reverse 
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Lua and UTF-8

● Some useful tricks with pattern matching

t = "ÃøÆËÐ"
print(#(string.gsub(t, "[\128-\191]", "")))
   --> 5

for c in string.gmatch(t, ".[\128-\191]*") do
  print(c)
end
  --> Ã
  --> ø
  --> Æ
  --> Ë
  --> Ð
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A new UTF-8 Library

● utf8.char (num, num, ...)
● returns a utf-8 string formed from the given code 

points

● utf8.codepoint (s, [i, [j]])
● returns the code points of the string s:sub(i,j)
● j defaults to i, but it always corrected to include a 

complete byte sequence

● utf8.len (s, [l])
● number of code points in s up to byte l
● nil if string is not properly formed 
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A new UTF-8 Library

● utf8.byteoffset (s, l, [i])
● byte offset where l-th byte sequence starts (after 

position i)
● l can be 0 (offset where current sequence starts) 

or negative, too

● utf8.gcodepoint (s, [i, [j]])
● iterator for code points
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Integers: What

● Add an integer type to Lua
● That type could be either a 32 or 64-bit 

signed integral type
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Integers: Why

● 64 bits!
● mainly for external entities
● special algorithms
● counting: is 253 enough?

● Restricted systems: 32-bit integers + single 
precision floats
● better performance on hardware with no FP 

support (or support only for single precision)
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Integers: Alternatives

● Extra type for 64-bit values
● e.g., userdata

● Extra type for floating-point numbers
● on restricted systems using integers as numbers

● Both alternatives seem cumbersome
●  new operations in the API?
● how they behave with arithmetic operations?
● equality with numbers?
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Integers: Alternatives

● Larger floating point
● main reason to use doubles (long time ago)
● too expensive (uses more memory)
● does not solve related problem (small machines)
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Integers: Pros

● Most programmers already expect an integer 
type.

● No need to explain about precision of floating 
arithmetic :)

● Make explicit an integer type already implicit in 
several libraries

● No need to change numbers to integers on 
restricted hardware.
● easier support if difference is only int32 x int64 and 

float x double.
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Integers: Cons

● Added complexity to the language
● Added complexity to the code
● Added frequency of occurrences of small 

variants
● 32int x 64int and float x double

● For current 32-bit machines:
● 32int + double offers few gains
● 32int + float is incompatible
● 64int + double slows down the interpreter
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Integers: How

● Three options (at least)

 1) Explicit new type
● incompatible
● too complex (?)

 2) “Invisible”
● representation depends only on the value
● equal values mean equal representation
● not really invisible; subtle rules
● too complex (rules and implementation)
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Integers: How

 3) Subtype
● almost invisible

● It is possible to know whether a number is an 
integer or a float
● isfloat/isint (?)

● 1 is integer; 1.0 is float
● but 1 == 1.0
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Integers: How

type(1) == "number"
type(1.0) == "number"
1 == 1.0

But:

1 + 2^60 > 2^60     -- assuming 64-bit integers
1.0 + 2^60 == 2^60  -- double
print(1)      --> 1
print(1.0)    --> 1.0    (?)
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Integers: How

For all arithmetic operations except division 
and exponentiation: 

● If both operands are integers, the operation 
is performed on integers and the result is an 
integer.

● Otherwise, operands are converted to float, 
the operation is performed on floats, and the 
result is a float.
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Exponentiation is almost like 
other operators, but performed 
on floats if exponent is negative
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Integers: How

● All operations except division give integer 
results when operands are integer
● (other exception is x^-y)

● Therefore, they give the same results when 
performed either on integers or on floats, 
except for overflows
● that includes comparisons
● for overflows, floats lose precision
● what should happen to integer overflow?
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Integer Overflow

1) Convert to double
● best for compatibility
● few other uses (except for 32 x double configurations)

2) Raise an error
● more secure (there are no surprises)
● check may be expensive
● rule out some useful tricks

3) Wrap around
●  dangerous, but has its uses
●  cheap implementation
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Integer Division

● Two different operations: float division and 
integer division

● Float divison: x/y, result is always float
● Integer division: x//y, result is always integer   

● notation borrowed from Python
● floor of x/y

● x/1 converts to float, x//1 converts to integer
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Integers and Tables

● When used as a key, a float with an "integer 
value" is always converted to an integer
● "integer value" means that x == x//1
● if x == x//1 then x = x//1 end

● Test is already present in current 
implementation
● but invisible to the programmer
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Integers: Equality

● For equality, adopting the same rules of 
arithmetic operations leads to some nasty 
properties
● equality is not transitive: 2^60 == 2.0^60 and 

(2^60 + 1) == 2.0^60, but 2^60 ~= (2^60 + 1)

● Another definition: x == y iff (x/1 == y/1 and 
x//1 == y//1)
● 2^60 == 2.0^60 but (2^60 + 1) ~= 2.0^60
● more expensive implementation
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Integers: Order

● Same rules as for arithmetic operations?
● Some nasty properties

● order is not transitive: 2^60 <= 2.0^60 and (2^60 
+ 1) <= 2.0^60, but not 2^60 <= (2^60 + 1)

● order is not strict: 2^60 <= 2.0^60 and 2.0^60 <= 
2^60, but 2^60 ~= 2.0^60

● Equality rules have nasty properties, too
● order is not total
● more expensive implementation
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Integers: C API

● lua_pushinteger creates an integer, 
lua_pushnumber creates a float

● lua_tointeger converts to integer, 
lua_tonumber converts to float
● following the same conversion rules of x//1 and 

x/1

● lua_Unsigned probably will be the 
unsigned version of lua_Integer
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Integers: Other Issues

● tonumber: result can be integer or float, 
following the same rules of the scanner

● io.read("*n"): result is float; new format 
("*i"?) for reading integers

● Coercion from string to number: always results 
in float
● simpler implementation, compatible, and leading to 

extinction

● tostring (and print): floats always have a 
decimal mark?
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That is it.
(for now...)
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978-85-903798-5-0

Coming soon to a 
bookstore “near” you...
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