
What is Next for Lua?
A Personal Perspective

Roberto Ierusalimschy

2

What is Next?

● (No breakthroughs…)
● Libraries
● Unicode
● Integers

3

Libraries

● LPeg
● struct/pack

4

LPeg: What it is

● A library for pattern matching
● Goes from simple patterns to full grammars

"[a-z]+"

[[
Sexp <- atom / '(' sp Sexp* ')' sp
atom <- %w+ sp
sp <- %s*
]]

5

LPeg: Pros

● A good balance of expressiveness and
complexity

● It may become a real differential for Lua
● More “Unicode-friendly”

● e.g., "—*" (zero or more em dashes)

6

LPeg: Cons

● Redundant with current pattern matching
● ideally we should deprecate current

implementation, but transition is not always easy

● Not so small
● half the size of all current libraries together

● Not so mature

7

Struct: What it is

● A library for packing/unpacking binary data in
strings

s = struct.pack("iic", -24, 13, "x")

print(struct.unpack("iic", s))
 --> -24 13 x 10

8

Struct: Pros

● Small and simple
● Common in several scripting languages
● Wide range of uses

● binary data in sockets
● packing of data inside Lua

9

Struct: Cons

● Conflict with future features
● e.g., packing/unpacking of C data outside Lua, in

the host program

10

Unicode

● What does it mean "support Unicode"?
● What encoding should Lua use?
● Do we need a new type for Unicode strings?

● (NO!!!)

11

Unicode "Support"

● Lua has no intention of "supporting" Unicode
● for any reasonable definition of "support"

● Unicode is too complex for Lua
● too many tables, all huge

● But Lua can offer some very basic primitives
to ease the coding of other libraries or simple
tasks

● Mostly, operations to deal with the encoding

12

Encoding

● UTF-8 seems the clear winner
● UTF-16 has the same problems of UTF-8

plus some others
● no easy access to i-th character

● UTF-8 can be smaller even for Asian
languages
● e.g.: front page of Wikipedia Japan: 83 kB in

UTF-8, 144 kB in UTF-16

13

Encoding

Moreover, UTF-8 is much
simpler for Lua :-)

14

Lua and UTF-8

● Lua strings work naturally with UTF-8
● Literal strings can contain UTF-8 characters

● as long as text editor allows

● I/O works naturally with UTF-8
● provided OS does not interfere

● File names and the like depend on the OS
● Many string-manipulation functions do not work

properly with UTF-8
● string.char, string.byte, string.upper, string.lower,

string.reverse

15

Lua and UTF-8

● Some useful tricks with pattern matching

t = "ÃøÆËÐ"
print(#(string.gsub(t, "[\128-\191]", "")))
 --> 5

for c in string.gmatch(t, ".[\128-\191]*") do
 print(c)
end
 --> Ã
 --> ø
 --> Æ
 --> Ë
 --> Ð

16

A new UTF-8 Library

● utf8.char (num, num, ...)
● returns a utf-8 string formed from the given code

points

● utf8.codepoint (s, [i, [j]])
● returns the code points of the string s:sub(i,j)
● j defaults to i, but it always corrected to include a

complete byte sequence

● utf8.len (s, [l])
● number of code points in s up to byte l
● nil if string is not properly formed

17

A new UTF-8 Library

● utf8.byteoffset (s, l, [i])
● byte offset where l-th byte sequence starts (after

position i)
● l can be 0 (offset where current sequence starts)

or negative, too

● utf8.gcodepoint (s, [i, [j]])
● iterator for code points

18

Integers: What

● Add an integer type to Lua
● That type could be either a 32 or 64-bit

signed integral type

19

Integers: Why

● 64 bits!
● mainly for external entities
● special algorithms
● counting: is 253 enough?

● Restricted systems: 32-bit integers + single
precision floats
● better performance on hardware with no FP

support (or support only for single precision)

20

Integers: Alternatives

● Extra type for 64-bit values
● e.g., userdata

● Extra type for floating-point numbers
● on restricted systems using integers as numbers

● Both alternatives seem cumbersome
● new operations in the API?
● how they behave with arithmetic operations?
● equality with numbers?

21

Integers: Alternatives

● Larger floating point
● main reason to use doubles (long time ago)
● too expensive (uses more memory)
● does not solve related problem (small machines)

22

Integers: Pros

● Most programmers already expect an integer
type.

● No need to explain about precision of floating
arithmetic :)

● Make explicit an integer type already implicit in
several libraries

● No need to change numbers to integers on
restricted hardware.
● easier support if difference is only int32 x int64 and

float x double.

23

Integers: Cons

● Added complexity to the language
● Added complexity to the code
● Added frequency of occurrences of small

variants
● 32int x 64int and float x double

● For current 32-bit machines:
● 32int + double offers few gains
● 32int + float is incompatible
● 64int + double slows down the interpreter

24

Integers: How

● Three options (at least)

 1) Explicit new type
● incompatible
● too complex (?)

 2) “Invisible”
● representation depends only on the value
● equal values mean equal representation
● not really invisible; subtle rules
● too complex (rules and implementation)

25

Integers: How

 3) Subtype
● almost invisible

● It is possible to know whether a number is an
integer or a float
● isfloat/isint (?)

● 1 is integer; 1.0 is float
● but 1 == 1.0

26

Integers: How

type(1) == "number"
type(1.0) == "number"
1 == 1.0

But:

1 + 2^60 > 2^60 -- assuming 64-bit integers
1.0 + 2^60 == 2^60 -- double
print(1) --> 1
print(1.0) --> 1.0 (?)

27

Integers: How

For all arithmetic operations except division
and exponentiation:

● If both operands are integers, the operation
is performed on integers and the result is an
integer.

● Otherwise, operands are converted to float,
the operation is performed on floats, and the
result is a float.

28

Exponentiation is almost like
other operators, but performed
on floats if exponent is negative

29

Integers: How

● All operations except division give integer
results when operands are integer
● (other exception is x^-y)

● Therefore, they give the same results when
performed either on integers or on floats,
except for overflows
● that includes comparisons
● for overflows, floats lose precision
● what should happen to integer overflow?

30

Integer Overflow

1) Convert to double
● best for compatibility
● few other uses (except for 32 x double configurations)

2) Raise an error
● more secure (there are no surprises)
● check may be expensive
● rule out some useful tricks

3) Wrap around
● dangerous, but has its uses
● cheap implementation

31

Integer Division

● Two different operations: float division and
integer division

● Float divison: x/y, result is always float
● Integer division: x//y, result is always integer

● notation borrowed from Python
● floor of x/y

● x/1 converts to float, x//1 converts to integer

32

Integers and Tables

● When used as a key, a float with an "integer
value" is always converted to an integer
● "integer value" means that x == x//1
● if x == x//1 then x = x//1 end

● Test is already present in current
implementation
● but invisible to the programmer

33

Integers: Equality

● For equality, adopting the same rules of
arithmetic operations leads to some nasty
properties
● equality is not transitive: 2^60 == 2.0^60 and

(2^60 + 1) == 2.0^60, but 2^60 ~= (2^60 + 1)

● Another definition: x == y iff (x/1 == y/1 and
x//1 == y//1)
● 2^60 == 2.0^60 but (2^60 + 1) ~= 2.0^60
● more expensive implementation

34

Integers: Order

● Same rules as for arithmetic operations?
● Some nasty properties

● order is not transitive: 2^60 <= 2.0^60 and (2^60
+ 1) <= 2.0^60, but not 2^60 <= (2^60 + 1)

● order is not strict: 2^60 <= 2.0^60 and 2.0^60 <=
2^60, but 2^60 ~= 2.0^60

● Equality rules have nasty properties, too
● order is not total
● more expensive implementation

35

Integers: C API

● lua_pushinteger creates an integer,
lua_pushnumber creates a float

● lua_tointeger converts to integer,
lua_tonumber converts to float
● following the same conversion rules of x//1 and

x/1

● lua_Unsigned probably will be the
unsigned version of lua_Integer

36

Integers: Other Issues

● tonumber: result can be integer or float,
following the same rules of the scanner

● io.read("*n"): result is float; new format
("*i"?) for reading integers

● Coercion from string to number: always results
in float
● simpler implementation, compatible, and leading to

extinction

● tostring (and print): floats always have a
decimal mark?

37

That is it.
(for now...)

38

978-85-903798-5-0

Coming soon to a
bookstore “near” you...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

