
A visual DSL toolkit in Lua
Past, present and future

Alexander Gladysh <ag@logiceditor.com>

Lua Workshop 2013
Toulouse

1 / 44

Outline

Introduction

The Problem

Classic third-party alternatives

Past generations

The present generation

The future

Questions?

2 / 44

Alexander Gladysh

I CTO, co-founder at LogicEditor
I In löve with Lua since 2005

3 / 44

LogicEditor

I Use Lua to develop:
I Visual DSL toolkit (subject of this talk)
I Big-data analytics
I Intensive-load web-services
I In-browser and mobile games

I 600+ KLOC of private Lua codebase
I Some contributions to open-source Lua projects

4 / 44

The Problem

I Business-logic is highly volatile.
I Programmers are not domain area specialists.
I Specialist ⇔ Manager ⇔ Programmer loop is slow.
I Specialist ⇔ Programmer loop is expensive.
I Let specialists do the business-logic!

5 / 44

6 / 44

Non-programmers aren’t programmers

It is not enough to be able to compose an algorithm and even
implement it with some simple programming language.
For commercial programming you’ll also need, at least:

I Technical background
I Debugging skills
I Team coding skills

7 / 44

Solution

I A tool that prevents technical mistakes
I While limiting creativity as little as possible
I And is within grasp of a non-programmer.

8 / 44

Ad-hoc implementations

I One-shot, very limited flexibility
I Full of crutches
I Hard to maintain

9 / 44

Classic third-party alternatives

10 / 44

MIT Scratch

11 / 44

Descent Freespace Editor Events

12 / 44

Lego NXT-G

13 / 44

Apple Automator

14 / 44

What is in common?

I A visual domain-specific language,
I that allows user to describe
I the control-flow.

15 / 44

A retrospective of ideas

Screenshots shown here are from editors done by me and/or my
colleagues for different companies we worked for, over time.
Only an idea was re-used and improved between generations.

16 / 44

Video-adventure game editor

(No screenshots available)

I Legacy, circa 2002—2004
I Graph of in-game dialog remarks and answer choices
I Allowing to tie-in video-loop to remark
I No Lua.

17 / 44

Adventure game dialog editor, I, II

I Graph of in-game dialog remarks and answer choices
I With ability to add custom Lua code logic (in II)
I Generated data (in Lua) for a state machine (also in Lua)

18 / 44

Browser MMO quest editor, I, II

19 / 44

Browser MMO magic system editor

20 / 44

Analysis

I Some non-programmers prefer visual control-flow editors.
I Some — textual representation.
I (Programmers hate to use both kinds.)
I All editors were very useful, some — invaluable.
I But, in retrospective, some should have been replaced by

dedicated coders.
I None of the past-generation editors were flexible enough to be

used outside its immediate domain (but this never was an
official goal for them).

21 / 44

The Visual Business Logic Editor Toolkit

22 / 44

Design goals

I Easy to create new editors.
I Easy to support existing editors.
I Easy to integrate with "any" other project on "any"

technology.
I Easy enough to learn and use by end-users.

23 / 44

Editor use-cases

For example:

I A dialog editor for a game scenario writer.
I A magic system editor for a game-designer.
I A mission logic editor for a game level-designer.
I A DB query editor for a data analyst (Hadoop, anyone?).
I An advertising campaign targeting editor for a marketer.
I ...and so on.

24 / 44

Technology

I The data is a tree corresponding to the control flow (or to
anything tree-like, actually).

I The output is structured text (code or data).
I Editor code, UI and backend, is generated by Lua code in the

Toolkit, from the data "schema".
I Editor UI is in JavaScript / HTML, backend is in Lua.

25 / 44

The Data Schema

I Embedded Lua DSL (see my talk on Lua WS’11).
http://bit.ly/lua-dsl-talk

I Describes how to:
I check data validity,
I generate default data,
I render data to editor UI,
I change data in editor UI,
I render the conforming data to the output code (or data).

I Two layers: human-friendly and machine-friendly

26 / 44

http://bit.ly/lua-dsl-talk

Schema Example, I

See also: http://bit.ly/le7-schema

lang:root "lua.print-string"

lang:value "lua.string.value" {
data_type = "string";
default = "Hallo, world!";
render:js [[String Value]] { [[${1}]] };
render:lua { [[${1}]] };

}

27 / 44

http://bit.ly/le7-schema

Schema Example, II

lang:func "lua.print-string" {
"lua.string.value";
render:js [[Print string]] {

[[Print: ${1}]];
};
render:lua {

[[print(${1})]];
};

}

28 / 44

Default Data

{
id = "lua.print-string";
{

id = "lua.string.value";
"Hallo, world!";

}
}

Renders to Lua as:

print("Hallo, world!")

29 / 44

UI for default data (simplified)

<div id="lua.print-string">
Print: Hallo, world!

</div>

NB: That turns to edit-box on click.

30 / 44

Extending string type

lang:type "lua.string" {
init = "lua.string.value";
render:js [[String]] { menu = [[S]]; [[${1}]] };
render:lua { [[${1}]] };

}

lang:func "lua.string.reverse" {
type = "lua.string";
render:js [[Reverse string]] { [[Reverse: ${1}]] };
render:lua { [[(${1}):reverse()]] };

}

31 / 44

Print with multiple arguments

lang:list "lua.print"
{

"lua.string";
render:js [[Print]] {

empty = [[Print newline]];
before = [[Print values:]];
glue = [[]];
after = [[]];

};
render:lua {

before = [[print(]];
glue = [[,]];
after = [[)]];

};
}

32 / 44

Main primitives

I lang:const
I lang:value
I lang:enum
I lang:func
I lang:list
I lang:type

33 / 44

Machine-friendly schema

I node:literal
I node:variant
I node:record
I node:value
I node:list

34 / 44

Data-upgrade routines

I A set of hooks for data tree traversal.
I Transformations between two given data versions.
I In terms of node schema.
I Semi-automatic, template code is generated.

35 / 44

What else?

I Scopes in the schema.
I External and internal data-sources.

36 / 44

Several points of improvement

Current generation does its job well, but we see several ways on
how to make it better
Several points to improve

I Better, modern HTML (at the cost of support of IE6).
I Lua in browser for a server-less integration option.
I Even more flexible and expressive Schema DSL.

NB: We’ll probably go for a control-flow diagram UI first, not
text-based one (current text-based is cool enough).

37 / 44

Problems with the current DSL

I One language for three separate concepts:
I data tree structure,
I editor UI,
I final output.

I Data tree structure gets a bit synthetic and convoluted at
times.

I Should be easier to add alternative editor UIs.

38 / 44

Solution

I Three separate sets of languages:
I data tree format,
I render to output (per output format),
I render to editor (per editor kind).

I CSS-like rules instead of pre-defined set of node types

39 / 44

Early examples

http://bit.ly/le8-proto

data:root "script"
data:type "script" ("*", "action")
data:type "action" "print-var" "var-name"

to:text "script" :T [[
local _VARS = {}
${indent(concat(children))}
]]
to:text "print-var" "var-name"

:T [[print(_VARS[${quote:lua(node)}])]]

to:ui "print-var" "var-name"
:T [[Print: ${child(1)})]]

40 / 44

http://bit.ly/le8-proto

An alternative approach to the Embedded DSLs in Lua

foo:bar "baz" { "quo" }

local proxy = foo
proxy = proxy["bar"]
proxy = proxy(foo, "baz")
proxy = proxy({ "quo" })

41 / 44

The FSM

foo:bar "baz" { "quo" }

If proxy is as a FSM, indexes and calls — state transitions.

INIT | index "bar" -> foo.bar
foo.bar | call -> foo.bar.name

foo.bar.name | call -> foo.bar.name.param
FINAL <- foo.bar.name.param

Early working prototype: http://bit.ly/le-dsl-fsm.

42 / 44

http://bit.ly/le-dsl-fsm

Easier to code complex DSL constructs

play:scene [[SCENE II]]
.location [[Another room in the castle.]]
:enter "HAMLET"
:remark "HAMLET" [[
Safely stowed.
]]
:remark { "ROSENCRANTZ", "GILDERSTERN" }

.cue [[within]] [[
Hamlet! Lord Hamlet!
]]
:remark "HAMLET" [[
What noise? who calls on Hamlet?
O, here they come.
]]

43 / 44

Questions?

Alexander Gladysh, ag@logiceditor.com

44 / 44

	Introduction
	The Problem
	Classic third-party alternatives
	Past generations
	The present generation
	The future
	Questions?

