
Roberto Ierusalimschy

Luiz Henrique de Figueiredo

Waldemar Celes

Lua: 20 Years

1992-1993: The Beginning

1992: Tecgraf

Partnership between PUC-Rio and
Petrobras (the Brazilian Oil Company)

1992: Tecgraf

• Two projects using “little languages”

DEL, for data entry PGM, to visualize geologic profiles

d

:e gasket "gasket properties"
mat s # material
d f 0 # distance
y f 0 # settlement stress
t i 1 # facing type

:p gasket.m>30
gasket.m<3000
gasket.y>335.8
gasket.y<2576.8

DEL
Data Entry Language

• form definition
• parameter list
• types and default values

type @track {x:number, y:number=23, z}

type @line {t:@track=@track{x=8}, z:number*}

-- create an object 't1', of type 'track'
t1 = @track {y=9, x=10, z="hi!"}

l = @line {t=@track{x=t1.y, y=t1.x}, z=[2,3,4]}

SOL
Simple Object Language

• data description language
• not totally unlike XML (with DTD)
• BibTeX-like syntax

1992: Tecgraf

• Both DEL & PGM shared several
limitations
• decision-making facilites
• arithmetic expressions
• abstraction mechanisms

1993

• Roberto (PGM), Luiz (DEL) and
Waldemar (PGM) got together to find a
common solution to their common
problems...

What we needed?

• A “generic configuration language”
• A “complete” language
• Easily embeddable
• Portable
• Non-intimidating syntax
• As simple as possible

As we were giving up Sol,

a friend suggested a new name...

...and Lua was born

Lua 1.0 (1993)

• Called 1.0 a posteriori
• The simplest thing that could possibly

work
• Standard implementation

• precompiler with yacc/lex
• opcodes for a stack-based virtual machine

• Less than 5000 lines of C code

Lua 1.0 (1993)

• Requirements:
• simple, portable, extensible, embeddable,

small

• Expectations:
• to solve our problems with PGM and DEL
• fulfilled our expectations: both DEL and PGM

used Lua successfully

• It was a big success in Tecgraf

Soon, several projects at Tecgraf
were using Lua

Lua 1.1 (1994)

• New users brought new demands
• several small improvements
• mainly for performance

• Reference manual
• Well-defined and well-documented C API

License

• First public distribution
• ftp
• free for academic uses, but not free for

commercial uses
• after one year, only one unfruitful contact

• Later versions with free license
• open-source license
• not “open-source decision making”

How was Lua 1.0?

t1 = @track{x = 10.3, y = 25.9,
 title = "depth"}

• Not that different from Sol...

How was Lua 1.0?

t1 = @track{x = 10.3, y = 25.9,
 title = "depth"}

function track (t)
 if not t.x then t.x = 0.0 end
 if type(t.x) ~= "number" then
 error("invalid 'x' value")
 end
 if type(t.y) ~= "number" then
 error("invalid 'y' value")
 end
end

• But quite different...

t = @(100) -- empty
t = @[a, b, c] -- list
t = @{x = 10, y = 20} -- record
t = @foo{x=10, y = 20}

Tables in Lua 1.0

• The sole data structure
 still is

• Constructors:

Tables in Lua 2.1 (1995)

• Any value as index
 not only numbers and strings

• Simplification
 Only one constructor + syntactic sugar:

t = {} -- empty
t = {a, b, c} -- list
t = {x = 10, y = 20} -- record
t = foo({x=10, y = 20})

Lua 2.1 - 2.5 (Feb 95 - Nov 96)

• Fallbacks
• minimum mechanism to get the label “OO

inside”

• External precompiler
 faster load for large programs (metafiles)

• Debug facilities
• basic mechanisms for external debuggers

• Pattern matching

Tables everywhere

• As Lua evolved, the use of tables only
increased

• All data structures
 arrays, records, sets, lists, etc.
 objects
 modules

• Tables also used for several internal
structures
 global variables, metamethods, references (in

the API)

Newsgroups:
comp.compilers,comp.lang.misc,comp.programming,comp.lang.c
From: lhf@csg.uwaterloo.ca (Luiz H de Figueiredo)
Organization: Computer Systems Group, University of Waterloo
Keywords: tools, available
Date: Fri, 8 Jul 1994 11:51:45 GMT

This is the first public release of Lua.

* What is Lua?
Lua is a simple, yet powerful, language for extending
applications. Lua has been developed by TeCGraf, the Computer
Graphics Technology Group of PUC-Rio, the Catholic University of
Rio de Janeiro, Brazil. Dozens of industrial products developed
by TeCGraf use Lua.
[…]

International Exposure

International Exposure

• First home page in 1995
 http://www.inf.puc-rio.br/~roberto/lua

• e-mail contact with “far-away” users
• Beginning of 1997 - discussion list

 to allow users to answer users' questions
 end of 1997 - more than 100 subscribers,

should we try a newsgroup?

http://www.inf.puc-rio.br/~roberto/lua

International Exposure

• Jun 1996 - paper in S:P&E
 R. Ierusalimschy, L. H. de Figueiredo, W. Celes, Lua

- an extensible extension language, Software:
Practice & Experience 26(6):635-652, 1996.

• Dec 1996 - article in Dr. Dobb's
 L. H. de Figueiredo, R. Ierusalimschy, W. Celes, Lua:

an extensible embedded language, Dr. Dobb's
Journal 21(12):26-33, 1996.

Beachhead in Games
From: Bret Mogilefsky <mogul@lucasarts.com>
To: "'lua@icad.puc-rio.br'" <lua@icad.puc-rio.br>
Subject: LUA rocks! Question, too.
Date: Thu, 9 Jan 1997 13:21:41 -0800

Hi there...

After reading the Dr. Dobbs article on Lua I was very eager to
check it out, and so far it has exceeded my expectations in every
way! It's elegance and simplicity astound me. Congratulations on
developing such a well-thought out language.

Some background: I am working on an adventure game for the
LucasArts Entertainment Co., and I want to try replacing our older
adventure game scripting language, SCUMM, with Lua.

Lucas Arts, 1998:
First AAA game to
use Lua

Scripting in Grim Fandango

Bret Mogilefsky

“[The engine] doesn't know anything about adventure games,
or talking, or puzzles, or anything else that makes Grim
Fandango the game it is. It just knows how to render a set
from data that it's loaded and draw characters in that set.
[…]
“The real heroes in the development of Grim Fandango were
the scripters. They wrote everything from how to respond to
the controls to dialogs to camera scripts to door scripts to the
in-game menus and options screens. […]
“A TREMENDOUS amount of this game is written in Lua. The
engine, including the Lua interpreter, is really just a small part
of the finished product.”

Bret Mogilefsky, Lua workshop 2005

1998 - 2002

• User base grows outside Brazil
 shift from inside PUC to outside

• Development of a virtual community
• Writing of PiL
• Several changes in the language

 support for larger programs
 functional facilities
 several incompatible changes between

versions

Lua 3.1 (1998)

• Functional features
• syntax for anonymous, nested functions
• since Lua 1.0, function f ... was sugar

for f = function ..., except that the
latter was not valid syntax!

foreach(t, function (k, v)
 print(k, v)
end)

button.action = function ... end

iterators

callbacks

Lexical scoping

• Functional features
• No simple and efficient way to implement

lexical scoping
• on-the-fly compilation with no intermediate

representation + activation records in a stack
• hindered earlier adoption of nested functions

function f (x)
 return function () return %x end
end

upvalue

Upvalues

• “a form of proper lexical scoping”
• The frozen value of an external local variable

inside a nested function
• Trick somewhat similar to Java demand for
final when building nested classes

• Special syntax to avoid misunderstandings

“Its user base is also small; there might be only a
few tens of thousands of Lua programmers in
the world. They're very fond of this language,
though, and the imminent explosion of ubiquitous
embedded processing (computers in your car, in
your plumbing, and in your kitchen appliances)
can only work in favor of Lua.”

In Aug 1998, Cameron Laird wrote in
SunWorld:

For us, this “small base” was much
larger than we could have imagined!

In Aug 1998, Cameron Laird wrote in
SunWorld:

“Its user base is also small; there might be only a
few tens of thousands of Lua programmers in
the world. They're very fond of this language,
though, and the imminent explosion of ubiquitous
embedded processing (computers in your car, in
your plumbing, and in your kitchen appliances)
can only work in favor of Lua.”

Lua 3.2 (1999)

• Multithreading?
• for Web servers

Lua 3.2

• Multithreading?
• Problems with multithreading

• (preemption + shared memory)
• not portable
• no one can write correct programs when
a=a+1 is non deterministic

• core mechanisms originally proposed to OS
programming, not to “normal people”

• almost impossible to debug

Lua 3.2

• Multithreading?
• Multiple “Lua processes”

• multiple independent states in an application
• no shared memory

• Would require major change in the API
• each function should get the state as an extra

argument
• instead, a single C global variable in the code

points to the running state
• Extra API functions set the running state

Lua 4.0 (2000)

• Major change in the API
• all functions got a new parameter (the state)
• no more C global variables in the code
• libraries should not use C globals, too
• concurrent C threads can each has its own

state

• We took the opportunity and made
several other improvements in the API
• stack oriented

2001

• Several appearances in Brazilian press
• March 2001, new site: www.lua.org

• gift from a user (Jim Mathies)

• Few months later, lua-users.org
• kept by Lua users (thanks to John Belmonte)

• Big plans for 4.1

Plans for Lua 4.1

• Multithreading?
• multiple characters in games

Plans for Lua 4.1

• Multithreading?
• Coroutines!

• portable implementation
• deterministic semantics
• coroutines + scheduler =

non-preemptive multithreading
• could be used as a basis for multithreading

for those that really wanted it

Plans for Lua 4.1

• New implementation for tables
• store array part in an actual array

• New implementation for upvales
• allowed “true” lexical scoping!

• New register-based virtual machine
• Tags replaced by metatables

• regular tables that store metamethods (old
tag methods) for the object

Plans for Lua 4.1

• New implementation for tables
• store array part in an actual array

• New implementation for upvales
• allowed “true” lexical scoping!

• New register-based virtual machine
• Tags replaced by metatables

• regular tables that store metamethods (old
tag methods) for the object

Too much for a minor version...

Lua 5.0 (2003)

• Coroutines
• Lexical scoping
• Register-based virtual machine, new

implementation for tables
• Metatables, boolean type, weak tables,

proper tail calls, ...
• Module system

Lua 5

• Dec 2003 - 1st edition of “Programming in
Lua”

• Mar 2004 - roundtable about Lua at GDC
• Jul 2005 - 1st Lua workshop

• San Jose, CA (sponsored by Adobe)

• Mar 2006 - 2nd edition of “Programming in
Lua”

Lua 5.1 (2006)

• Incremental garbage collector
• demand from games

• Better support for modules
• more policies
• functions to help following “good practice”

• Support for dynamic C libraries
• not portable!
• the mother of all (non portable) libraries

 2007: III ACM History of
Programming Languages.

 2009: Masterminds of
Programming: Conversations with
the Creators of Major Programming
Languages. O'Reilly Media.

 2009 (2012): Concepts of
Programming Languages. Robert
Sebesta, Addison Wesley.

Lua 5.2 (2011)

• Yieldable pcall and metamethods
• Emergency collection
• New lexical scheme for global variables

(_ENV)
• Ephemeron tables
• bitlib library
• Finalizers for tables
• Light C functions

Lua Today

Embedded Systems

 Samsung (TVs), Cisco (routers), Logitech
(keyboards), Olivetti (printers), Océ (printers),
Ginga (Brazilian TV middleware), Verison
(set-top boxes), Texas Instruments
(calculators Nspire), Huawei (cell phones),
Sierra Wireless (M2M devices), Mercedes-
Benzs (cars), …

Adobe Lightroom
more than one million

lines of Lua code

Slashdot, Feb 1, 2012:

“Wikipedia Chooses Lua As Its New
Template Language”

Wired, March 19, 2013:

“Meet Wikipedia, the Encyclopedia
Anyone Can Code”

“As of this weekend, anyone on Earth can use Lua [...] to
build material on Wikipedia and its many sister sites,
such as Wikiquote and Wiktionary.”

Scripting the Internet of Things

November 2011: “Sierra Wireless, IBM,
Eurotech, and the Eclipse Foundation
establish an M2M Industry Working
Group to ease the development,
testing, and deployment of machine-to-
machine solutions.”

October 2013: “Wind River Unveils
Latest Software Platform for Internet of
Things”

Lua in Games
• The Engine Survey (Mark DeLoura,

03/02/09,Gamasutra)
• What script languages are most people

using?

1

What is Next?

• Integers
• 64-bit values in “large” machines
• 32-bit integers and floats in “small” machines

• Extra libraries
• basic UTF-8 support
• struct

• Macros
• how to do it?

Our “Principles”

• It is much easier to add a missing feature
than to remove an excessive one

• Implementing is the easiest part of any
new feature
• documentation, maintenance, added

complexity
• it is very hard to anticipate all implications of

a new feature
• Stuck to the standard
• Emphasis on embedding

Our “Principles”

• Mechanisms instead of policies
• type definitions in Sol
• delegation in Lua 2.1
• coroutines
• modules

• Effective way to avoid tough decisions
• This itself is a policy...

	PowerPoint Presentation
	1992-1993: The Beginning
	1992: Tecgraf
	Slide 4
	DEL Data Entry Language
	SOL Simple Object Language
	Slide 7
	1993
	What we needed?
	Slide 10
	Slide 11
	Lua 1.0 (1993)
	Slide 13
	Slide 14
	Lua 1.1
	License
	How was Lua 1.0?
	Slide 18
	Tables in Lua 1.0
	Tables in Lua 2.1
	Lua 2.1 - 2.5 (Nov 95 - Nov 96)
	Tables everywhere
	Slide 23
	International Exposure
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	1998 - 2002
	Lua 3.1
	Lexical scoping
	Upvalues
	1998
	Slide 36
	Lua 3.2
	Slide 38
	Slide 39
	Lua 4.0
	2001
	Plans for Lua 4.1
	Slide 43
	Slide 44
	Slide 45
	Lua 5.0
	Lua 5
	Lua 5.1
	Slide 49
	Slide 50
	Perspective
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Our "principles"
	Slide 61
	Slide 62

