
www.celedev.com

ce
le
de

v Using Lua
for Responsive Programming

of iOS apps

Jean-Luc Jumpertz

Workshop 2013

dimanche 24 novembre 13

http://www.celedev.com
http://www.celedev.com

ce
le
de

v
Responsive Programming on iOS

• The iOS ecosystem

• powerful mobile devices: iPads, iPhones

• very large and complex SDK
• to build apps with sophisticated User Experience

• large number of developpers

• Responsive Programming

• all about interactivity between a developer and his application

• while giving access to the entire iOS SDK

• more than just live-coding

• Major benefits

• fast prototyping and fine-tuning of apps

• fun to use, encourage experimentation, enable creativity

1. Edit

2. Test

3. Debug

dimanche 24 novembre 13

ce
le
de

v
System Components

Application

Target iOS device

OS + SDK iOS

Celedev Runtime

iOS SDK Bindings

X SDK

X Bindings

Dynamic code (Lua) Compiled code

Host Computer

OS X

Development Environment
Lua Code Editor

App Monitor / Debugger

Device manager

App Resources Manager

dimanche 24 novembre 13

ce
le
de

v
Demo : live collections

• Ultra-simple app with a
CollectionView-based
screen

• Entirely written in Lua

• 3 Lua classes inheriting
from ObjC SDK classes:

• controller,

• cell,

• layout

dimanche 24 novembre 13

ce
le
de

v
Why Lua?

• Clean, easy-to-learn, powerful syntax

• Dynamic language

• Lua C API

• Small memory footprint and performance

• Instantiable VM

• Easy-to-sandbox

• Business-friendly open-source license

• Not bloated with overkilling standard libraries

• The «battery not included» option is perfect in Celedev’s case
as tons of «batteries» are provided by the IOS SDK

dimanche 24 novembre 13

ce
le
de

v
Integrating Lua

• System characteristics

• event-triggered execution of Lua code

• e.g. user interaction, timer…

• no active waiting or polling

• as it would impact the battery life

• Software design choices

• Latest Lua version (5.2.2)

• Runtime code entirely written in C, using the Lua C API

• Lua is for application code

• Avoid weird twisting of Lua syntax ;)

• Keep the Lua VM code unmodified

• except where absolutely needed :)

dimanche 24 novembre 13

ce
le
de

v
Integrating Lua

• Objective C API

• provides a simplified view of a Lua State to an iOS developper

• Sample code

CIMLuaContext* luaContext = [[CIMLuaContext alloc] initWithName:@"MyLua"];

// Set a Lua global
luaContext [@"foo"] = @"Hello World";

// Same as Lua: self.rootController = require "MyModule"
[luaContext loadLuaModuleNamed:@"MyModule"
 withCompletionBlock:^(id result) {

 if ([result isKindOfClass:[UIViewController class]])
 {
 self.rootController = result;
 }
}];

dimanche 24 novembre 13

ce
le
de

v
Multi-threading Lua

• Why bothering with multiple threads?

• The external world (the native app code) is multi-threaded

• The native code calls the Lua Context

• potentially from various threads

• The Lua Context calls the native code

• some native functions shall be called in specific threads

• Lua code shall not slow down user interaction in the app

• Better to run Lua code out of the main thread (user events loop)

• Lua GC can be executed faster when CPU is idle

• i.e. in a low-priority background thread

• But Lua can only run safely from a single thread

dimanche 24 novembre 13

ce
le
de

v
Multi-threading Lua

• Internally Lua has everything we need (almost)

• a thread structure: lua_State,

• lua_newthread function in the C API

• macros to track Lua threads creation and deletion: luai_userstatethread…

• What we need to add to make it work

• a simple lock to serialize the execution of Lua from multiple threads

• well-chosen descheduling points
• good candidates: debug hook, C function call from Lua, Lua thread function return

• a basic asynchronous messaging service

• Avoiding pitfalls

• keep a reference to secondary Lua threads to prevent Garbage Collection

• … but do not leak Lua threads

• carefully design the Lua threads scheduler to avoid deadlocks

• make it invisible to the executed Lua code

dimanche 24 novembre 13

ce
le
de

v
Object-Oriented Framework

• Goals:

• integrate Lua code transparently with iOS SDK and Objective C runtime

• provide a unified and simple model for Lua and Objective C objects

• support dynamic code update by design

• Main Features

• expose a Lua object model fully compatible with ObjC concepts

• symmetrical model

• Lua can call any method of an Objc instance or class

• ObjC can call any published method of a Lua instance or Class

• create a Lua class as a subclass of an ObjC class (or of a Lua class)

• declare that a Lua class conforms to an ObjC protocols

• this publishes the Lua methods defined in this protocol to ObjC

dimanche 24 novembre 13

ce
le
de

v
Object-Oriented Framework

• Code example
local UIView = require "UIKit.UIView"
local UIFont = objc.UIFont
local UIColor = objc.UIColor

local Cell = class.createClass ("LabelCell", objc.UICollectionViewCell)

function Cell:setAppearance (cellIndex, cellCount)

 -- ensure that params are not nil
 cellIndex, cellCount = cellIndex or 0, cellCount or 1

 local contentView = self.contentView
 local contentSize = contentView:bounds().size

 -- Text label
 local label = self.label

 label.frame = { x = 0, y = contentSize.height / 4,
 width = contentSize.width, height = contentSize.width }
 label.font = UIFont:boldSystemFontOfSize (46.0)
 label.textColor = UIColor.whiteColor
end

return Cell

dimanche 24 novembre 13

ce
le
de

v
Object-Oriented Framework

• Implementation

• in C, using Lua C API

• classical (yet complex) Lua objects implementation based on metatables and
__index & __newindex metamethods

• internally,2 different kinds of objects (hidden from the user)
• Lua-only objects implemented as tables

• Lua-objc objects implemented as userdata + uservalue

• Objects lifecycle compliant with both worlds

• reference-counted ObjC objects

• garbage-collected Lua objects

• Performance aspects

• the heavily-used metamethods are the most critical regarding performance

• avoid pushing C strings to Lua in performance-critical code

• replaced by upvalues where appropriate, and lua_rawgetp or lua_rawgeti
elsewhere

dimanche 24 novembre 13

ce
le
de

v
Dynamic Code Update

• Dynamic code update is managed by Celedev IDE in
association with the runtime

• managed at the Lua module level

• A Lua module is updated when

• it is syntactically correct

• the module syntax has been changed since the last loaded
version

• Lua require() function rewritten for dynamic update

• get the latest version of a module from

• the connected Celedev IDE, if present

• the application package otherwise

dimanche 24 novembre 13

ce
le
de

v
The debugger

• Good debug tools are essential for serious software
development

• The Celedev remote Debugger has been specifically designed
for supporting the Responsive Programming environment

• fully multi-threads aware
• including multi-threaded debug of Lua coroutines

• integrated with the Object-Oriented framework
• includes a full-featured class-hierarchy inspector

• integrated with the Dynamic code update feature
• can debug functions in module old versions when needed

• Demo

dimanche 24 novembre 13

ce
le
de

v
Conclusion

• All this works pretty well!

• Lua is extremely well-designed for embedding

• excellent C API stack model, small and readable source code

• the only language I know for which 50% of the ref. manual is about C
integration

• highly useful hooks for advanced integration: luai_userstatexxx,
luai_writestring, lua_assert…

• No necessary feature missing

• see Occam’s razor «Entia non sunt multiplicanda praeter necessitatem»

• Places for improvement

• long integer values for bridging with 64 bits systems (Lua 5.3?)

• better parser errors detection: range-based, more accurate diagnostics…

• garbage collection: could it be made it more transparent?

dimanche 24 novembre 13

ce
le
de

v
Conclusion

Lua is a scripting language…

…capable of running complex applications

dimanche 24 novembre 13

ce
le
de

v
Conclusion

Lua is a scripting language…

…capable of running complex applications

Lua is a small language…

…but it’s bigger on the inside

dimanche 24 novembre 13

ce
le
de

v
Conclusion

Lua is a scripting language…

…capable of running complex applications

Lua is a small language…

…but it’s bigger on the inside

dimanche 24 novembre 13

ce
le
de

v
Thank You!

For more information about Celedev:
• website:www.celedev.com
• mail: jean-luc@celedev.eu
• twitter: @celedev

My Lua public projects:
• LuaSyntaxer: https://bitbucket.org/jean_luc/luasyntaxer
• Lua 5.2 + JL patches: https://bitbucket.org/jean_luc/lua-5.2-jl-patches

dimanche 24 novembre 13

