
CFM : A Console File Manager for POSIX

Joseph Manning

Department of Computer Science
University College Cork

Ireland

Lua Lua Workshop 2013 Lua

CFM : The Context

console : text-based, runs in terminal

Why a console file manager? (it’s soooo 1980’s!)

• keyboard is faster and more ergonomic than mouse

• fits more onto the screen, no space taken by icons

• more light-weight, can help on small or slow computers

• easier and faster over a remote connection

• useful on servers which lack GUI software

Why yet another console file manager?

• already: Midnight Commander, FDclone, vifm, ytree, . . .

• but none of these really suited me (!)

• so let’s look at the goals for CFM . . .

CFM : Goals

Design Goals

• simple ergonomic interaction

• consistency of commands

• instant seamless response

• clean minimalist appearance

• silent handling of harmless errors

• modest set of commonly-used features

Personal Goals

• create a file manager to match my wishes

• explore ‘curses’ programming

• gain more experience with Lua

CFM : Demonstration

CFM : The Program

• written entirely in Lua

• runs under Lua 5.1 / Lua 5.2 / LuaJIT

• uses the ‘curses’ and ‘posix’ libraries

• comparison with other console file managers:

Name Language Files Lines

FDclone C 102 94 586

Midnight Commander C 325 92 228

vfu C 56 14 948

ytree C 58 13 970

vifm C 40 9 010

CFM Lua 1 718

CFM : Binding Keys to Actions

KeyActions = {

a = function()

ToggleActive("access")

end,

q = function()

running = false

end,

z = function()

if #Items > 0 then

local item = Items[focuspos]

item.marked = not item.marked

end

end,
}

setmetatable(KeyActions,

{ __index = function()

return function() end

end })

CFM : Main Program

Setup()

while running do

UpdateDisplay()

KeyActions[ReadKey()]()

end

CloseDown()

Speed of Computing #t

• #t computed repeatedly, but with no change in t

• optimisation! local len_t = #t

• code a bit messier . . . but maybe worth it for the speed?

• no, not at all!

• can compute #t

where t has length 10,000

a total of 1,000,000 times

in just 0.1 seconds

• +1 : binary search

• -1 : tables with holes

CFM : The Need for Speed

• crucial to achieve instant seamless response

• yet need only operate on a human time-scale

• less than 1/30th second ≡ instantaneous

• “fast enough is fast enough”

• even on a little 5-year-old ¤195 netbook . . .

• . . . which is also running 2 infinite loops

• raw speed of Lua allows clean coding of CFM

CFM : User Configuration

• a single configuration file, processed by dofile

• defines a string terminal and a table OpenProg

• example (‘#’ = placeholder for name of file being opened):

terminal = "urxvtc"

OpenProg = {

dvi = "xdvi #",

html = "iceweasel #",

jpg = "display #",

odt = "libreoffice #",

pdf = "zathura # 2>/dev/null",

wmv = "mplayer #",

["*"] = "elvis # 2>/dev/null"

}

CFM : Reflections on Use of Lua

• small language, clear orthogonal features, easy to grasp

• f-a-s-t ! . . . although “fast enough is fast enough”

• the table data structure (combines ‘arrays’ and ‘records’)

• default counting-from-one

• use of dispatch table of anonymous functions

• use of __index metamethod for missing table keys

• simplicity of writing and processing configuration file

CFM : Current Status

• still a work-in-progress, although quite useable already

• portability barely tested

• error-checking incomplete

• documentation incomplete

• but if you still want a copy, then e-mail me at

manning@cs.ucc.ie

or see me today with a USB stick

Thanks for Listening !

