The Medusa compiller

A Lua tool for highly interactive ebooks

Enrico Colombini <erix@erix.it> (freelance author)

Lua workshop 2014, September 13-14, Moscow

mailto:erix@erix.it

Old ‘gamebooks’

Andrea Angiolino

IN CERCA DI FORTUNA

¢ 1970s-1980s
(not the first ones)

* Printed on paper
» Simple choices

Branches in gamebooks

» “The werewolf is getting nearer”
- Shoot a silver arrow (go to 75).
- Flee as fast as you can (go to 47).

attack 751 > (cont.)
/ j

> (cont.)

Variables in gamebooks

» “There is only a rusty piece of metal here”
- Pick it up (tick checkbox ‘C’, go to 22).
- Leave it here (go to 22).

A [
B [

., ¢ B[_ _ .,
==~~~
A [

B [
c O

Memory in gamebooks

 Pen and paper are used to store information
 The human reader is the run-time processor

A [

B [] c? —> (cont

¢ X X |76 (cont.)
— | == 22 \ —_ == = = =

A O ™~

B [] c? [35 | — (cont.)

Interactive ebooks

* \We have hyperlinks, but...
* No (portable) runtime language
 No way to save variables

* No external storage, processing
* Only remembers the current page
* Immutable set of ‘printed’ pages

 What can we do?

Memory in an ebook

* A boolean can be stored by duplicating pages
 Each branch represents a different state

two series of identical pages
A reaches

the car

does not take

the keys ZA —> 3A —> 4A\ — SA g BA cannot start it
j
takes 2B \ — 3B —> 43 —> 5B —> 6B | canstartit

the keys

\Y%

Source page, instance pages

* Each instance page ‘contains’ its state
* |[nstance page contents can be the same

instance A

state: { keys = false } of page 5
does not take

the keys ZA\—)- A\—» 4A\—)- SA\—-)-—
j
takes ZB\ SB\—)- 48\ — 5B | —>

the keys _
state: { keys = true } instance B
of page 5

Implications

 Multiple ‘vars’ allow complex behaviour
* A simple bookmark ‘'saves’ the whole state
 The human reader is not aware of the state

* The number of possible states must be finite
(no open-ended counters, no random)

 Combinatorial explosion (6 bools = pages x 64)

@ Page budget ﬁ”@

* Printed book: 100s of pages (cost)

* Ebook: 1,000s of pages (e-reader limitations)

o Static website: 1,000,000s of pages (space, fs)
 Combinatorial explosion must be limited

» | ocalize states, use patterns

 Hard to do by hand

I||||| ,
LI
LI

10.

®

& —

locusta.lua

L3

medusa.lua

]

[=p=r

L3

medusa.lua

czmmandy

® ®
— @

locusta_local.htmi

Medusa
. toolchain

==

locusta. html

postproc.lua
] & e
| sy ozl Vet el gl i

12 lua

. g~ o — 5%

pdf_full.htmi

—Fﬁ—bi"l_

locusta.xhtml

. ® =
—~ 8~

htmiZps locusta. ps psZpdf locusta. pdf

J

pihicly wdababd

postproc.lua

¢ |&

3

apibhcl apub_ Bead Nl opul AN eputom

postproc.lua

F e @

- @& —

b

watcy wib_head hind web_sinimi wabom

postproc.lua

£ o @

- & —

mabicky reobi_teesd heel mobi bl hiedl rechican

postproc.lua
2 e

k) oa_hascbiml

.G .

epub_full,hitm

iE

web_full html

miobi_full htmil

- @& — ¢« — ®

ios_full.htmil

€ —

splitmake_epub.lua locusta_ epub

.

BRIz R

splitmake_epub.lua locusta_web

@

web.cly

make_mobi.lua locusta.opf kindlegen.exe locusta.mobi
oy 1; serpinis_rachi opd
(network) | s @
splitmake_ios.lua locusta.pa

locusta_ios Xcode
— 3

Ohj-C BAPCAR MABSECE remdercm

cJ &)

g]

11.

With a little help from Lua...

* An adventure game ebook
* Puzzles of different types
 |tems to pick up, dialogs

* Free exploration

* Multiple characters

« Counters, timers
* 940 (small) source pages
» 5800 instance (‘printed’) pages, 11000 links

12.

An old JS framework: Idra

ONITEIDIONN . P
IUna skoria di campagna | -+ |

{' > | ':j:' File: 1 ' 2 JE programmifIdrafusde)Skaria, html o v [| |;3v DP| l" ‘ﬁ‘ ﬂ" - -

Una visita sgradita

In una pentola di cocoio sotto al letto tien moltre 1 tuot sudatt nspanmt ben sedict
"upt" d'argento, le lncoicant monete delle Terre Libere. Ti serwiranne presto;

quest'anno la grandine ha distrutto 1 raccolte & non hat nemmmeno le sementi per la
SEIINA.

TTn giorne perd t 51 presenta un tale vestite di nero; dice che i sue mestiere &
“protegoere chilavora da eventual incidentt” e & propone di versargh cincue hap
d'argento "come polizza contro gh infortum".

® (31 da1 1l denaro nchiesto

* T nfiut adducendo una scusa

® [o caccl a male parole

Fossiedi: 16 lupi d'argento, 2 caproche, 0 vaccopotatm.

13.

ldra ‘book’ structure

function Kitchen() {
title("The room is on fire")
text ("Things are getting rather hot here.")
choice ("Get out immediately", Garden)
choice ("Grab the beer can and get out",
"v.beer = 1; go(Garden)")

» Each page is a function

* Page content is ‘printed’ by API calls

* Link actions may contain code

* The state is changed by the link action

14.

Variable page content

function Garden () {
title("Garden outside burning house")
if (v.beer == 1) {
text ("You are holding a beer can.")

}
/] ...

}

« The wv. object (table) contains the state

* The same page function (source page) may
‘print’ different content (instance pages)

» Usual game logic programming
15.

= Back to the ebook =

e Could we reuse the same approach?

Pages are immutable, there is no runtime
How to keep track of the state?
How to change the state on link action?

How to print different content depending on
state”?

How to allow a ‘'normal’ programming style?

16.

Ebook as directed graph

 Nodes are pages
* No predictable structure, cycles are common

(entrance) — j j J . j

A N
2-B-B-B-e
I A T A N

s 2-2-E

17.

@ Just click on all links @

* The number of nodes (instance pages) is finite
* \We can enumerate them:

» Start with an Idra-like source, at the first page

'Print’ the page with the initial state

Simulate clicking on a link, execute its code
‘Print’ the destination page with changed state
Repeat recursively, recognizing visited nodes

The Medusa compiler

Caveat: unrefined tool, made for my own use
No error handling, no documentation

HTML generation is very primitive

...but it worked fine for my project

19.

Book source format

landing
if not v.count then v.count = 9 end

i1f v.count > 0 then
P(v.count, " seconds to touchdown.'")
Choice ("Wait", 'landing',
F{v.count = v.count - 1})
else
P"We have landed on the Moon!"
end

* A source page is Lua code
* Alink can contain Lua code

20.

Macro replacement

function page.landing(ENV)
if not v.count then wv.count = 9 end

i1f v.count > 0 then
P(v.count, " seconds to touchdown.'")
Choice ("Wait", 'landing',
function(ENV) v.count = v.count - 1 end)
else
P"We have landed on the Moon!"
end

end

 Page and links become Lua functions

21.

The vtable

* A vtable represents the current state
* “Variables table” (nothing to do with C++)

v = { count=7 }

» Vtables are shallow but can contain any
number or type of scalar values

v = { ship='Nifna’, days=35, landInView=false }

« Two instance pages of the same source page

with equal vtables are the same instance page
22.

= Page generation

e Source page + vtable = Instance page
function page.landing(ENV)

P(v.count, " seconds to touchdown.")

end

* The source page function is called
with the current vtable in its environment

v = { count=7 }

Output: <p>7 seconds to touchdown.</p>

23.

@ Link generation @

* The link function is called with a copy of
the current vtable in its environment

* The link function can change the vtable content

Choice ("Wait", 'landing',
function(ENV) v.count = v.count - 1 end)

* |f the resulting instance page (source + vtable)
exists, its name is put into the link

* |f not, a new instance page name is generated

and a (source + vtable) request is queued "

Link output

v = { count=7 } -- copy of source page vtable

Choice ("Wait", 'landing',

function(_ENV) v.count = v.count - 1 end)

v = { count=6 } -- after link function call

* An instance page is requested with:
source page=‘landing’, v = { count=6 }

* |t does not exist, so a new name is generated
for the (queued) instance page:

Output: Wait

25.

Queue serving

* \When the page is complete, queued instance
pages are generated the same way

<!-- -->
<p>6 seconds to touchdown.</p>
<1li>Wait</1i>

* They may queue requests for other pages:

<!-- -->
<p>5 seconds to touchdown.</p>
<1li>Wait</1i>

26.

Reporting

-- Created pages by page name:

landing

landing 1 ({}

landing 2 { count=8, }
landing 3 { count=7, }
landing 4 { count=6, }
landing 5 { count=5, }
landing 6 { count=4, }
landing 7 { count=3, }
landing 8 { count=2, }
landing 9 { count=1l, }

landing 10 { count=0, }
27.

4 levels of Lua

The Medusa compiler
The source pages
The link functions

The configuration file

e The levels run in different environments

» Source code is executed during compilation
rather than at runtime (metaprogramming, sort of)

28.

Wolf, goat and cabbage

This 1s the river bank nearest to home; I have to bring all
three items undamaged to the other bank.

Here 1s the wolf I have to ferry across the river.
Here 1s the goat I have to ferry across the river.
Here 1s the cabbage I have to terry across the river.

e Take the wolf

e Take the goat

e Take the cabbage

e Cross the river alone CC BY-SA 3.0 Jan Njendik

29.

Instance pages created

* Unreachable pages are not created
* No need for pruning

-—- Pages by name:

farside
lost
nearside
river
start
won

R ROUIR W

30.

river

river

1

river

2

river

3

river

4

river

5

river

6

river

7

river

8

river

9

river

10

river

11

river

12

river

13

river

14

river

15

river

16

river

17

river

18

river

19

river

20

iy gy g g, b by iy iy gu—

Oy, i, i, by iy g g g b by =

cabbage=1,
cabbage=1,
cabbage=3,
cabbage=1,
cabbage=1,
cabbage=1,
cabbage=3,
cabbage=2,
cabbage=2,
cabbage=2,
cabbage=2,
cabbage=3,
cabbage=2,
cabbage=2,
cabbage=2,
cabbage=3,
cabbage=2,
cabbage=1,
cabbage=1,
cabbage=1,

goat=1,
goat=3,
goat=1,
goat=1,
goat=2,
goat=2,
goat=2,
goat=3,
goat=2,
goat=1,
goat=1l,
goat=1,
goat=1,
goat=3,
goat=2,
goat=2,
goat=2,
goat=3,
goat=1,
goat=2,

wolf=3,
wolf=1,
wolf=1,
wolf=1,
wolf=1,
wolf=3,
wolf=1,
wolf=1,
wolf=1,
wolf=3,
wolf=1,
wolf=2,
wolf=2,
wolf=2,
wolf=3,
wolf=2,
wolf=2,
wolf=2,
wolf=2,
wolf=2,

et gl Cged Syt) gt g Cmged gl

pd gl) gt gl) gt) Cged g g

Page
vtables
(report)

31.

Debugging

[farside 1, { cabbage=1, goat=2, wolt=1, }]

On the river

This 1s the river bank nearest to the market.

I brought the goat here.

e Ferry back the goat [river 2, { cabbage=1, goat=3, wolf=1, }]

o Cross the river alone [river 5, { cabbage=1, goat=2, wolf=1, }]

32.

Performance

Times on an old Pentium 4, including reporting:

My game-ebook (943 / 5817 pages): 1.64 s
1/1000 pages: 0.11 s

1/ 10k pages: 0.94 s
1/ 100k pages: 9.64 s f" [\
1/1M pages: 96.8s

Almost O(n), no worst case
Reading / post-processing takes much longer

33.

Use of environments

* Lua 5.1: setfenv()

 Lua 5.2: ENYV and textual substitution
(works, but not a perfect solution)

* Could be done with a proxy environment,
just switching the vtable, or with an upvalue

» Should preserve cross-page insulation
 Should also allow common sub-functions
 Should control access to vtable, functions, etc.

 Many ways to solve problems in Lua!
34.

Possible improvements

Common functions callable from pages
Automated timers
Subpages with return stack

@
Random choices (simulation) ﬁ

Better HTML (esp. classes)
Make it production-ready (error handling etc.)
Add user-friendly GUI editor

35.

That's all, folks

Medusa compiler and samples at:

http://www.erix.it/medusa.html

Some images are taken from “Interactive fiction & ebooks”
(Enrico Colombini, quintadicopertina)

36.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

