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Old ‘gamebooks’

● 1970s-1980s
(not the first ones)

● Printed on paper
● Simple choices
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Branches in gamebooks

“The werewolf is getting nearer”

- Shoot a silver arrow (go to 75).

- Flee as fast as you can (go to 47).
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Variables in gamebooks

“There is only a rusty piece of metal here”

- Pick it up (tick checkbox ‘C’, go to 22).

- Leave it here (go to 22).
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Memory in gamebooks

● Pen and paper are used to store information
● The human reader is the run-time processor
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Interactive ebooks

● We have hyperlinks, but...
● No (portable) runtime language
● No way to save variables
● No external storage, processing
● Only remembers the current page
● Immutable set of ‘printed’ pages
● What can we do?
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Memory in an ebook

● A boolean can be stored by duplicating pages
● Each branch represents a different state
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Source page, instance pages

● Each instance page ‘contains’ its state
● Instance page contents can be the same
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● Multiple ‘vars’ allow complex behaviour
● A simple bookmark ‘saves’ the whole state
● The human reader is not aware of the state

● The number of possible states must be finite

(no open-ended counters, no random)
● Combinatorial explosion (6 bools = pages x 64)

Implications

9.



  

Page budget

● Printed book: 100s of pages (cost)
● Ebook: 1,000s of pages (e-reader limitations)
● Static website: 1,000,000s of pages (space, fs)
● Combinatorial explosion must be limited
● Localize states, use patterns
● Hard to do by hand
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Medusa
toolchain
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With a little help from Lua...

● An adventure game ebook
● Puzzles of different types
● Items to pick up, dialogs
● Free exploration
● Multiple characters
● Counters, timers
● 940 (small) source pages
● 5800 instance (‘printed’) pages, 11000 links

(in Italian only)
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An old JS framework: Idra
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function Kitchen() {
  title("The room is on fire")
  text("Things are getting rather hot here.")
  choice("Get out immediately", Garden)
  choice("Grab the beer can and get out", 
         "v.beer = 1; go(Garden)")
}

● Each page is a function
● Page content is ‘printed’ by API calls
● Link actions may contain code
● The state is changed by the link action

Idra ‘book’ structure
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Variable page content

● The  v. object (table) contains the state

● The same page function (source page) may
‘print’ different content (instance pages)

● Usual game logic programming

function Garden() {
  title("Garden outside burning house")

if (v.beer == 1) {
text("You are holding a beer can.")

}
  // ...
}
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Back to the ebook

● Pages are immutable, there is no runtime
● How to keep track of the state?
● How to change the state on link action?
● How to print different content depending on 

state?
● How to allow a ‘normal’ programming style?

● Could we reuse the same approach?
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Ebook as directed graph

● Nodes are pages
● No predictable structure, cycles are common
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Just click on all links

● Start with an Idra-like source, at the first page
● ‘Print’ the page with the initial state
● Simulate clicking on a link, execute its code
● ‘Print’ the destination page with changed state
● Repeat recursively, recognizing visited nodes

● The number of nodes (instance pages) is finite
● We can enumerate them:
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The Medusa compiler

● Caveat: unrefined tool, made for my own use
● No error handling, no documentation
● HTML generation is very primitive
● ...but it worked fine for my project
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Book source format

# landing

if not v.count then v.count = 9 end

if v.count > 0 then
    P(v.count, " seconds to touchdown.")
    Choice("Wait", 'landing', 
           F{v.count = v.count - 1} )
else
    P"We have landed on the Moon!"
end

● A source page is Lua code
● A link can contain Lua code
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Macro replacement

function page.landing(_ENV)

if not v.count then v.count = 9 end

if v.count > 0 then
    P(v.count, " seconds to touchdown.")
    Choice("Wait", 'landing', 
     function(_ENV) v.count = v.count - 1 end)
else
    P"We have landed on the Moon!"
end

end

● Page and links become Lua functions 21.



  

The vtable

● A vtable represents the current state
● “Variables table” (nothing to do with C++)

v = { count=7 }

v = { ship=’Niña’, days=35, landInView=false }

● Two instance pages of the same source page
with equal vtables are the same instance page

● Vtables are shallow but can contain any
number or type of scalar values
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Page generation

● The source page function is called
with the current vtable in its environment

function page.landing(_ENV)
    ...
    P(v.count, " seconds to touchdown.")
    ...
end

v = { count=7 }

● Source page + vtable = Instance page

Output: <p>7 seconds to touchdown.</p>

v = { count=7 }
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Link generation

● If the resulting instance page (source + vtable)
exists, its name is put into the link

●  If not, a new instance page name is generated 
and a (source + vtable) request is queued

Choice("Wait", 'landing', 
     function(_ENV) v.count = v.count - 1 end )

● The link function is called with a copy of
the current vtable in its environment

● The link function can change the vtable content
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  Output: <a href="#landing__4">Wait</a>

Link output

● An instance page is requested with:
source_page=‘landing’, v = { count=6 }

● It does not exist, so a new name is generated
for the (queued) instance page: 

v = { count=7 } -- copy of source page vtable

Choice("Wait", 'landing', 
     function(_ENV) v.count = v.count - 1 end )

v = { count=6 } -- after link function call
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Queue serving

● When the page is complete, queued instance
pages are generated the same way

<a name="landing__5"><!-- --></a>
<p>5 seconds to touchdown.</p>
<ul><li><a 
href="#landing__6">Wait</a></li></ul>

<a name="landing__4"><!-- --></a>
<p>6 seconds to touchdown.</p>
<ul><li><a 
href="#landing__5">Wait</a></li></ul>

● They may queue requests for other pages:
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Reporting

--------------------------------
-- Created pages by page name:

landing
   landing__1  {}
   landing__2  { count=8, }
   landing__3  { count=7, }
   landing__4  { count=6, }
   landing__5  { count=5, }
   landing__6  { count=4, }
   landing__7  { count=3, }
   landing__8  { count=2, }
   landing__9  { count=1, }
   landing__10  { count=0, }
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4 levels of Lua

The Medusa compiler

The source pages

The link functions

The configuration file

● The levels run in different environments
● Source code is executed during compilation

rather than at runtime (metaprogramming, sort of)
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Wolf, goat and cabbage

CC BY-SA 3.0 Jan Nijendijk
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Instance pages created

-----------------------
-- Pages by name:

    5  farside
    1  lost
    5  nearside
   20  river
    1  start
    1  won

● Unreachable pages are not created
● No need for pruning
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river
   river__1  { cabbage=1, goat=1, wolf=3, }
   river__2  { cabbage=1, goat=3, wolf=1, }
   river__3  { cabbage=3, goat=1, wolf=1, }
   river__4  { cabbage=1, goat=1, wolf=1, }
   river__5  { cabbage=1, goat=2, wolf=1, }
   river__6  { cabbage=1, goat=2, wolf=3, }
   river__7  { cabbage=3, goat=2, wolf=1, }
   river__8  { cabbage=2, goat=3, wolf=1, }
   river__9  { cabbage=2, goat=2, wolf=1, }
   river__10  { cabbage=2, goat=1, wolf=3, }
   river__11  { cabbage=2, goat=1, wolf=1, }
   river__12  { cabbage=3, goat=1, wolf=2, }
   river__13  { cabbage=2, goat=1, wolf=2, }
   river__14  { cabbage=2, goat=3, wolf=2, }
   river__15  { cabbage=2, goat=2, wolf=3, }
   river__16  { cabbage=3, goat=2, wolf=2, }
   river__17  { cabbage=2, goat=2, wolf=2, }
   river__18  { cabbage=1, goat=3, wolf=2, }
   river__19  { cabbage=1, goat=1, wolf=2, }
   river__20  { cabbage=1, goat=2, wolf=2, }

Page
vtables
(report)
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Debugging
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Performance

● Times on an old Pentium 4, including reporting:

● My game-ebook (943 / 5817 pages): 1.64 s
● 1 / 1000 pages: 0.11 s
● 1 / 10k pages:   0.94 s
● 1 / 100k pages: 9.64 s
● 1 / 1M pages:    96.8 s

● Almost O(n), no worst case
● Reading / post-processing takes much longer
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Use of environments

● Lua 5.1: setfenv()
● Lua 5.2: _ENV and textual substitution

(works, but not a perfect solution)
● Could be done with a proxy environment,

just switching the vtable, or with an upvalue
● Should preserve cross-page insulation
● Should also allow common sub-functions
● Should control access to vtable, functions, etc.
● Many ways to solve problems in Lua!
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Possible improvements

● Common functions callable from pages
● Automated timers
● Subpages with return stack
● Random choices (simulation)

● Better HTML (esp. classes)
● Make it production-ready (error handling etc.)
● Add user-friendly GUI editor
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That’s all, folks

Medusa compiler and samples at:

http://www.erix.it/medusa.html

Some images are taken from “Interactive fiction & ebooks”
(Enrico Colombini, quintadicopertina)
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