

The Medusa compiler
A Lua tool for highly interactive ebooks

Enrico Colombini <erix@erix.it> (freelance author)

Lua workshop 2014, September 13-14, Moscow
1.

mailto:erix@erix.it

Old ‘gamebooks’

● 1970s-1980s
(not the first ones)

● Printed on paper
● Simple choices

2.

Branches in gamebooks

“The werewolf is getting nearer”

- Shoot a silver arrow (go to 75).

- Flee as fast as you can (go to 47).

3.

Variables in gamebooks

“There is only a rusty piece of metal here”

- Pick it up (tick checkbox ‘C’, go to 22).

- Leave it here (go to 22).

4.

Memory in gamebooks

● Pen and paper are used to store information
● The human reader is the run-time processor

5.

Interactive ebooks

● We have hyperlinks, but...
● No (portable) runtime language
● No way to save variables
● No external storage, processing
● Only remembers the current page
● Immutable set of ‘printed’ pages
● What can we do?

6.

Memory in an ebook

● A boolean can be stored by duplicating pages
● Each branch represents a different state

7.

Source page, instance pages

● Each instance page ‘contains’ its state
● Instance page contents can be the same

8.

● Multiple ‘vars’ allow complex behaviour
● A simple bookmark ‘saves’ the whole state
● The human reader is not aware of the state

● The number of possible states must be finite

(no open-ended counters, no random)
● Combinatorial explosion (6 bools = pages x 64)

Implications

9.

Page budget

● Printed book: 100s of pages (cost)
● Ebook: 1,000s of pages (e-reader limitations)
● Static website: 1,000,000s of pages (space, fs)
● Combinatorial explosion must be limited
● Localize states, use patterns
● Hard to do by hand

10.

Medusa
toolchain

11.

With a little help from Lua...

● An adventure game ebook
● Puzzles of different types
● Items to pick up, dialogs
● Free exploration
● Multiple characters
● Counters, timers
● 940 (small) source pages
● 5800 instance (‘printed’) pages, 11000 links

(in Italian only)

12.

An old JS framework: Idra

13.

function Kitchen() {
 title("The room is on fire")
 text("Things are getting rather hot here.")
 choice("Get out immediately", Garden)
 choice("Grab the beer can and get out",
 "v.beer = 1; go(Garden)")
}

● Each page is a function
● Page content is ‘printed’ by API calls
● Link actions may contain code
● The state is changed by the link action

Idra ‘book’ structure

14.

Variable page content

● The v. object (table) contains the state

● The same page function (source page) may
‘print’ different content (instance pages)

● Usual game logic programming

function Garden() {
 title("Garden outside burning house")

if (v.beer == 1) {
text("You are holding a beer can.")

}
 // ...
}

15.

Back to the ebook

● Pages are immutable, there is no runtime
● How to keep track of the state?
● How to change the state on link action?
● How to print different content depending on

state?
● How to allow a ‘normal’ programming style?

● Could we reuse the same approach?

16.

Ebook as directed graph

● Nodes are pages
● No predictable structure, cycles are common

17.

Just click on all links

● Start with an Idra-like source, at the first page
● ‘Print’ the page with the initial state
● Simulate clicking on a link, execute its code
● ‘Print’ the destination page with changed state
● Repeat recursively, recognizing visited nodes

● The number of nodes (instance pages) is finite
● We can enumerate them:

18.

The Medusa compiler

● Caveat: unrefined tool, made for my own use
● No error handling, no documentation
● HTML generation is very primitive
● ...but it worked fine for my project

19.

Book source format

landing

if not v.count then v.count = 9 end

if v.count > 0 then
 P(v.count, " seconds to touchdown.")
 Choice("Wait", 'landing',
 F{v.count = v.count - 1})
else
 P"We have landed on the Moon!"
end

● A source page is Lua code
● A link can contain Lua code

20.

Macro replacement

function page.landing(_ENV)

if not v.count then v.count = 9 end

if v.count > 0 then
 P(v.count, " seconds to touchdown.")
 Choice("Wait", 'landing',
 function(_ENV) v.count = v.count - 1 end)
else
 P"We have landed on the Moon!"
end

end

● Page and links become Lua functions 21.

The vtable

● A vtable represents the current state
● “Variables table” (nothing to do with C++)

v = { count=7 }

v = { ship=’Niña’, days=35, landInView=false }

● Two instance pages of the same source page
with equal vtables are the same instance page

● Vtables are shallow but can contain any
number or type of scalar values

22.

Page generation

● The source page function is called
with the current vtable in its environment

function page.landing(_ENV)
 ...
 P(v.count, " seconds to touchdown.")
 ...
end

v = { count=7 }

● Source page + vtable = Instance page

Output: <p>7 seconds to touchdown.</p>

v = { count=7 }

23.

Link generation

● If the resulting instance page (source + vtable)
exists, its name is put into the link

● If not, a new instance page name is generated
and a (source + vtable) request is queued

Choice("Wait", 'landing',
 function(_ENV) v.count = v.count - 1 end)

● The link function is called with a copy of
the current vtable in its environment

● The link function can change the vtable content

24.

 Output: Wait

Link output

● An instance page is requested with:
source_page=‘landing’, v = { count=6 }

● It does not exist, so a new name is generated
for the (queued) instance page:

v = { count=7 } -- copy of source page vtable

Choice("Wait", 'landing',
 function(_ENV) v.count = v.count - 1 end)

v = { count=6 } -- after link function call

25.

Queue serving

● When the page is complete, queued instance
pages are generated the same way

<!-- -->
<p>5 seconds to touchdown.</p>
Wait

<!-- -->
<p>6 seconds to touchdown.</p>
Wait

● They may queue requests for other pages:

26.

Reporting

-- Created pages by page name:

landing
 landing__1 {}
 landing__2 { count=8, }
 landing__3 { count=7, }
 landing__4 { count=6, }
 landing__5 { count=5, }
 landing__6 { count=4, }
 landing__7 { count=3, }
 landing__8 { count=2, }
 landing__9 { count=1, }
 landing__10 { count=0, }

27.

4 levels of Lua

The Medusa compiler

The source pages

The link functions

The configuration file

● The levels run in different environments
● Source code is executed during compilation

rather than at runtime (metaprogramming, sort of)

28.

Wolf, goat and cabbage

CC BY-SA 3.0 Jan Nijendijk
29.

Instance pages created

-- Pages by name:

 5 farside
 1 lost
 5 nearside
 20 river
 1 start
 1 won

● Unreachable pages are not created
● No need for pruning

30.

river
 river__1 { cabbage=1, goat=1, wolf=3, }
 river__2 { cabbage=1, goat=3, wolf=1, }
 river__3 { cabbage=3, goat=1, wolf=1, }
 river__4 { cabbage=1, goat=1, wolf=1, }
 river__5 { cabbage=1, goat=2, wolf=1, }
 river__6 { cabbage=1, goat=2, wolf=3, }
 river__7 { cabbage=3, goat=2, wolf=1, }
 river__8 { cabbage=2, goat=3, wolf=1, }
 river__9 { cabbage=2, goat=2, wolf=1, }
 river__10 { cabbage=2, goat=1, wolf=3, }
 river__11 { cabbage=2, goat=1, wolf=1, }
 river__12 { cabbage=3, goat=1, wolf=2, }
 river__13 { cabbage=2, goat=1, wolf=2, }
 river__14 { cabbage=2, goat=3, wolf=2, }
 river__15 { cabbage=2, goat=2, wolf=3, }
 river__16 { cabbage=3, goat=2, wolf=2, }
 river__17 { cabbage=2, goat=2, wolf=2, }
 river__18 { cabbage=1, goat=3, wolf=2, }
 river__19 { cabbage=1, goat=1, wolf=2, }
 river__20 { cabbage=1, goat=2, wolf=2, }

Page
vtables
(report)

31.

Debugging

32.

Performance

● Times on an old Pentium 4, including reporting:

● My game-ebook (943 / 5817 pages): 1.64 s
● 1 / 1000 pages: 0.11 s
● 1 / 10k pages: 0.94 s
● 1 / 100k pages: 9.64 s
● 1 / 1M pages: 96.8 s

● Almost O(n), no worst case
● Reading / post-processing takes much longer

33.

Use of environments

● Lua 5.1: setfenv()
● Lua 5.2: _ENV and textual substitution

(works, but not a perfect solution)
● Could be done with a proxy environment,

just switching the vtable, or with an upvalue
● Should preserve cross-page insulation
● Should also allow common sub-functions
● Should control access to vtable, functions, etc.
● Many ways to solve problems in Lua!

34.

Possible improvements

● Common functions callable from pages
● Automated timers
● Subpages with return stack
● Random choices (simulation)

● Better HTML (esp. classes)
● Make it production-ready (error handling etc.)
● Add user-friendly GUI editor

35.

That’s all, folks

Medusa compiler and samples at:

http://www.erix.it/medusa.html

Some images are taken from “Interactive fiction & ebooks”
(Enrico Colombini, quintadicopertina)

36.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

