
Integers in Lua 5.3

Р. Иеруcалимский
PUC-Rio

2

Numbers in Lua

● Since its first version (1993), Lua has had one
single kind of number

● First versions used float

● Changed to double in version 3.1 (1998)
● mainly because programmers needed 32-bit values
● a float has only 24 bits of mantissa, a double has 53

bits.

3

Doubles

● Well-defined rules (IEEE), including error and
overflow handling (±inf, NaN)

● Hardware support in conventional platforms
● even in 1998

● 53 bits is enough for most counting purposes
● 1 petabyte
● 1 million times the world population
● 300 000 years in seconds
● 20% of total global wealth in cents of dollars

GOOD

4

Doubles

● Big and slow for restricted hardware
● Awkward for bitwise operators

● should they operate on 53 bits?
● ~0 is 0xFFFFFFFF or -1?

● Some algorithms need 64 bits
● cryptography, encodings

● Some data need 64 bits
● handles

BAD

5

Doubles

● Integers already present in Lua as second-
class values.
● several library functions use integers (e.g., indices

in the string library)
● conversions not well specified and/or not efficient
● string.sub(s, -3.4, 8.7)

● Confusing in the C API
● conversions always lose bits in some direction

BAD

6

Integers

● 64-bit values
● Several options:

● long double
● infinite precision (e.g., Python)
● a new type (e.g., UInt64 in Javascript)
● inside type number, not exposed to the

programmer (e.g., LNUM in Lua)
● as a subtye of number, exposed to the programmer

7

Long Double

● Offers 64 bits
● Keeps simplicity and elegance of IEEE
● Fully compatible
● Only small changes in the implementation

GOOD

8

Long Double

● More problematic for small machines
● and even for not-so-small ones

● Increases memory use
● Not part of C89 standard
● Even C99 does not require a long double to be

really “long”
● Not widely supported (e.g., MS VS...)

BAD

9

Integers: Infinite Precision

● Elegant
● Avoid problems with signed x unsigned
● Safe

GOOD

10

Integers: Infinite Precision

● Quite Expensive
● Not that useful in practice

● when compared with 64 bits

● Problem in the C API BAD

11

64-bit Data as a New Type

● Keeps the simplicity of IEEE arithmetic
● Few changes in the language
● Solves the problem of 64-bit data

GOOD

12

64-bit Data as a New Type

● Does not solve the other problems...
● restricted hardware, 64-bit algorithms, bitwise

operations, interfaces with integers

BAD

13

Integers as “Implementation Detail”

● Keeps an apparent simplicity
● Solves all problems in our list
● Allows Lua-32

● uses 32-bit integers plus single floats

GOOD

14

Integers as “Implementation Detail”

● Somewhat expensive
● No explicit control for the programmer
● Complex rules for arithmetic operations

● (2^62 + 2) * 0.5 = ?

(All operands have exact representations, result
has exact representation, but operation does not
give the exact result.)

BAD

15

Integers as a Subtype

● Explicit difference between 1 and 1.0
● Almost transparent to programmers

● automatic coercion between floats and integers

● “[The] programmer has the option of mostly
ignore the difference between integers and
floats or assume complete control about the
representation of each value.”

Lua 5.3 reference manual

16

Main Rules

● Quite conventional
● Integer and float values are explicitly different

things
● print(1, 1.0) --> 1 1.0

● Values of both subtypes have type number
● print(type(1), type(1.0))

 --> number number

● Coercion makes them quite similar
● print(1 == 1.0) --> true

17

Guidelines

● The subtype of the result of an operation can depend
on the subtypes of its arguments, but it should not
depend on the values of its arguments
● easier for tools and for humans to infer subtypes

● Operations on reals under which integers are closed
should be polymorphic:
● 3.0 + 5.0 ≡ 8.0
● 3 + 5 ≡ 8

● 3.0 + 5 ≡ 8.0 (real is the more general type)

● similar for -, *, %

18

Other Operations: Division

● Avoid nightmare of 3/2 ≡ 1 but 3.0/2 ≡ 1.5

● Two separated operations: float division (/) and
integer division (//)
● Like in Python

● Integer division converts operands to integers
and does an integer division
● mainly because it is simpler than otherwise
● otherwise, what about ((2^62 + 2) // 2.0)?

19

Other Operations: Exponentation

● What to do with negative integer exponents,
such as (3 ^ -2)?

● 3^2 is integer but 3^-2 is float?
● Violates guideline 1

● Pretend that (3 ^ -2) ≡ (1 // 3^2)?
● complex and useless

● Operation is always on floats
● integer exponentiation is useful, but not enough to

deserve its own operator

20

Coercions

● Integers are always valid where floats are
expected: convertion never fails

● Floats can be converted to integers when its
value does not change (that is, it has an
integral value in the proper range)

string.sub(s, 1.5)
 stdin:1: bad argument #2 to 'sub'
 (number has no integer representation)

21

Integer Overflows

● Different cases:
● constants
● conversion from floats
● operations

● Different options:
● convert to floats
● error
● wrap around

22

Overflow: Constants

● Convert to float: weird and useless
● Error:

● a little tricky for unsigned integers
● programs for 64-bit Lua may not even compile in

Lua-32!

● Wrap around
● dangerous
● solves the problem for unsigned

23

Overflow: Conversion from Floats

● Error seems a good option here
● not a common operation
● other behaviors not useful

24

Overflow: Integer Operations

● Convert to float
● not as useful as it seems
● good for compatibility
● expensive

● Errors
● kills unsigned arithmetic
● expensive

● Wrap around
● allows unsigned arithmetic
● cheap

25

Bitwise Operators

● Absence of integers was the reason for the
absence of bitwise operators in Lua

● Mostly conventional: &, |, ~, >>, <<

● Operates on 64 bits
● a~b for exclusive or

● a^b already taken

● >> is logical shift
● no arithmetic shift; use arithmetic operation (integer

division)

26

Other Aspects

● Numerals: decimal point or exponent makes a
float; otherwise number is integer
● 0.0 1e1 0xFFF.0
● 0 234 0xFFF

● print distinguishes between floats and
integers (!)

● Table keys: float keys with integer values are
converted to integers
● a[1.0] = 0; print(next(a)) --> 1 0

27

Other Aspects

● tonumber and io.read("n") return float or
integer depending on the numeral’s syntax
● tonumber(“1”) --> 1

tonumber(“1.0”) --> 1.0
● breaks guideline 1

●

28

Final Remarks

● People loved the bitwise operators :-)
● Mostly compatible with 5.2

● main problem: print(1.0) --> 1.0

● Code base clearer and more conformant with
ANSI C
● coercions from floats to integers

● Seems to satisfy original goals
● Lua-32 will be officially supported

29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

