
Homemade load balancing with nginx + Lua

akononov@iponweb.net
ashcherbinin@iponweb.net

Overall scheme

Technical requirements

1. Correct answer for every user request
2. SSL
3. Redundancy
4. Sticky balancing
5. Universal company wide solution
6. Easy support and changing balancing method
7. Backend monitoring

Software which we found

1. Nginx vs HA proxy
2. Nginx vs Lighttpd
3. Nginx not enough
4. Nginx + lua - good enough !

1. Distributed load testing (jmeter)
2. Add / remove node testing
3. Testing on prod env.
4. Health checks and resurrection of dead
nodes
5. Fine tune linux and nginx in clouds (aws gce)

testing

monitoring

1. log monitoring
2. Nginx status page monitoring.
3. Upstream status monitoring via nginx
4. 3rd party monitoring

Some metrics

1. network performance 180K pps
2. network performance 500 Mbit/s
3. http requests overall 20K rps

Next - Anton`s part

The problem
Distribute HTTP requests from users among N servers so
that:
 - when an additional server is added, vast majority of users
do not change their servers, but 1/Nth of users move from
each of N “old” servers to the newly added server;
 - user “key”, which determines if 2 requests come from the
same user or 2 different users, may be arbitrarily complex
(IP address, cookies, URL parameters, etc., or any
combination)
(Sound like sticky balancing? It is NOT)

Mapping users to N servers?
Piece of cake! Easier than a
presidential campaign!

ServerNumber = hash(user) mod N

Naïve approach

Going
from n-1 to n servers (1 more server)
or from n to n-1 servers (1 less server)
results in
1/n users does not change server, while
(n-1)/n users change server

An ideal solution is impossible?
Read Wikipedia, you worthless office
plankton!

http://en.wikipedia.org/wiki/Consistent_hashing

Dealing with real world: Problems
 - Cannot create consistent hash in nginx init;
 - nginx dumped core when using Lua socket.
http.request();
 - deadlock when re-hashing using a single
nginx worker process;
 - timeouts when stress-testing in Amazon
AWS.

The solution
 1. ~300 lines in Lua (lots of debug messages)
 2. Uses nginx + Luajit + Lua nginx module +
Lua upstream nginx module
 3. The config written by sysadmins is a Lua
program (different in different projects)
 4. Seems efficient enough to saturate 1 Gbps
network interface with CPU usage < 50% on a
“8-core” virtual Amazon AWS server

Sample config
GetUserKey = function()
 local v = ngx.var
 local uses_msie = v.http_user_agent and v.http_user_agent:match('MSIE')
 local cookie = v.cookie_foobar
 local seller_id = v.arg_seller_id
 local buyer_id = v.arg_bidder_id
 if uses_msie then -- send all the users using MSIE to the same server
 return 'ANY_CONSTANT_STRING'
 elseif cookie and string.len(cookie) == 36 then -- valid and not opt-out
 return cookie
 elseif seller_id and seller_id ~= '' then -- seller_id not empty
 return seller_id
 elseif buyer_id and buyer_id ~= '' then -- buyer_id not empty
 return buyer_id
 end

 return v.remote_addr -- last resort is user's IP address
end

Links

1. http://luajit.org
2. http://nginx.org
3. https://github.com/openresty/lua-nginx-module
4. https://github.com/openresty/lua-upstream-nginx-module
5. http://gdnsd.org
6. http://jmeter.apache.org

http://luajit.org/
http://nginx.org
https://github.com/openresty/lua-nginx-module/
https://github.com/openresty/lua-upstream-nginx-module
http://gdnsd.org/
http://jmeter.apache.org/

Thank you!

