
Ad-hoc Big-Data Analysis with Lua
And LuaJIT

Alexander Gladysh <ag@logiceditor.com>
@agladysh

Lua Workshop 2015
Stockholm

1 / 32



Outline

Introduction

The Problem

A Solution

Assumptions

Examples

The Tools

Notes

Questions?

2 / 32



Alexander Gladysh

I CTO, co-owner at LogicEditor
I In löve with Lua since 2005

3 / 32



The Problem

I You have a dataset to analyze,
I which is too large for "small-data" tools,
I and have no resources to setup and maintain (or pay for) the

Hadoop, Google Big Query etc.
I but you have some processing power available.

4 / 32



Goal

I Pre-process the data so it can be handled by R or Excel or
your favorite analytics tool (or Lua!).

I If the data is dynamic, then learn to pre-process it and build a
data processing pipeline.

5 / 32



An Approach

I Use Lua!
I And (semi-)standard tools, available on Linux.
I Go minimalistic while exploring, avoid frameworks,
I Then move on to an industrial solution that fits your newly

understood requirements,
I Or roll your own ecosystem! ;-)

6 / 32



Assumptions

7 / 32



Data Format

I Plain text
I Column-based (csv-like), optionally with free-form data in the

end
I Typical example: web-server log files

8 / 32



Data Format Example: Raw Data

2015/10/15 16:35:30 [info] 14171#0: *901195
[lua] index:14: 95c1c06e626b47dfc705f8ee6695091a
109.74.197.145 *.example.com
GET 123456.gif?q=0&step=0&ref= HTTP/1.1 example.com

NB: This is a single, tab-separated line from a time-sorted file.

9 / 32



Data Format Example: Intermediate Data

alpha.example.com 5
beta.example.com 7
gamma.example.com 1

NB: These are several tab-separated lines from a key-sorted file.

10 / 32



Hardware

I As usual, more is better: Cores, cache, memory speed and
size, HDD speeds, networking speeds...

I But even a modest VM (or several) can be helpful.
I Your fancy gaming laptop is good too ;-)

11 / 32



OS

Linux (Ubuntu) Server.
This approach will, of course, work for other setups.

12 / 32



Filesystem

I Ideally, have data copies on each processing node, using
identical layouts.

I Fast network should work too.

13 / 32



Examples

14 / 32



Bash Script Example

time pv /path/to/uid-time-url-post.gz \
| pigz -cdp 4 \
| cut -d$’\t’ -f 1,3 \
| parallel --gnu --progress -P 10 --pipe --block=16M \

$(cat <<"EOF"
luajit ~me/url-to-normalized-domain.lua

EOF
) \

| LC_ALL=C sort -u -t$’\t’ -k2 --parallel 6 -S20% \
| luajit ~me/reduce-value-counter.lua \
| LC_ALL=C sort -t$’\t’ -nrk2 --parallel 6 -S20% \
| pigz -cp4 >/path/to/domain-uniqs_count-merged.gz

15 / 32



Lua Script Example: url-to-normalized-domain.lua

for l in io.lines() do
local key, value = l:match("^([^\t]+)\t(.*)")
if value then

value = url_to_normalized_domain(value)
end
if key and value then

io.write(key, "\t", value, "\n")
end

end

16 / 32



Lua Script Example: reduce-value-counter.lua 1/3

-- Assumes input sorted by VALUE
-- a foo --> foo 3
-- a foo bar 2
-- b foo quo 1
-- a bar
-- c bar
-- d quo

17 / 32



Lua Script Example: reduce-value-counter.lua 2/3

local last_key = nil, accum = 0

local flush = function(key)
if last_key then

io.write(last_key, "\t", accum, "\n")
end
accum = 0
last_key = key -- may be nil

end

18 / 32



Lua Script Example: reduce-value-counter.lua 3/3

for l in io.lines() do
-- Note reverse order!
local value, key = l:match("^(.-)\t(.*)$")
assert(key and value)

if key ~= last_key then
flush(key)
collectgarbage("step")

end

accum = accum + 1
end

flush()

19 / 32



Tying It All Together

Basically:
I You work with sorted data,
I mapping and reducing it line-by-line,
I in parallel where at all possible,
I while trying to use as much of available hardware resources as

practical,
I and without running out of memory.

20 / 32



The Tools

21 / 32



The Tools

I parallel
I sort, uniq, grep
I cut, join, comm
I pv
I compression utilities
I LuaJIT

22 / 32



LuaJIT?

Up to a point:
I 2.1 helps to speed things up,
I FFI bogs down development speed.
I Go plain Lua first (run it with LuaJIT),
I then roll your own ecosystem as needed ;-)

23 / 32



Parallel

I xargs for parallel computation
I can run your jobs in parallel on a single machine
I or on a "cluster"

24 / 32



Compression

I gzip: default, bad
I lz4: fast, large files
I pigz: fast, parallelizable
I xz: good compression, slow
I ...and many more,
I be on lookout for new formats!

25 / 32



GNU sort Tricks

LC_ALL=C \
sort -t$’\t’ --parallel 4 -S60% \
-k3,3nr -k2,2 -k1,1nr

I Disable locale.
I Specify delimiter.
I Note that parallel x4 with 60% memory will consume 0.6 *

log(4) = 120% of memory.
I When doing multi-key sort, specify parameters after key

number.

26 / 32



grep

http://stackoverflow.com/questions/9066609/fastest-possible-grep

27 / 32



Notes and Remarks

28 / 32



Why Lua?

Perl, AWK are traditional alternatives to Lua, but, if you’re not
very disciplined and experienced, they are much less maintainable.

29 / 32



Start Small!

I Always run your scripts on small representative excerpts from
your datasets, not only while developing them locally, but on
actual data-processing nodes too.

I Saves time and helps you learn the bottlenecks.
I Sometimes large run still blows in your face though:
I Monitor resource utilization at run-time.

30 / 32



Discipline!

I Many moving parts, large turn-around times, hard to keep tabs.
I Keep journal: Write down what you run and what time it took.
I Store actual versions of your scripts in a source control system.
I Don’t forget to sanity-check the results you get!

31 / 32



Questions?

Alexander Gladysh, ag@logiceditor.com

32 / 32


	Introduction
	The Problem
	A Solution
	Assumptions
	Examples
	The Tools
	Notes
	Questions?

