

The Design of Lua

Roberto Ierusalimschy

2

The design of a language involves many trade-
offs, and we need explicit goals and priorities to
settle these trade-offs. Different languages choose
different goals, and therefore settle these trade-
offs in different directions. Like any tool, no
language is good for everything.

3

Some PL Trade-offs

● Safety versus flexibility
– what you cannot do!

– type checking

– memory management

● Readability versus conciseness
– Perl: write once, read nowhere

● Performance versus abstractions
● Libraries versus portability

4

Some PL Trade-offs

● Flexibility versus good error messages
– Haskell

● Simplicity versus expressiveness

5

We need explicit goals to solve
trade-offs!

Lua Goals

● Portability
● Simplicity
● Small size
● Scripting

7

Portability

● Runs on most platforms we ever heard of
– Posix (Linux, BSD, etc.), OS X, Windows, Android,

iOS, Arduino, Raspberry Pi, Symbian, Nintendo DS,
PSP, PS3, IBM z/OS, etc.

– written in ANSI C

● Runs inside OS kernels
– NetBSD, Linux

● Written in ANSI C, as a free-standing
application

8

Simplicity

Reference manual with less than 100 pages
(proxy for complexity)

(spine)

Documents the language, the
libraries, and the C API.

9

Size

Lua 5.3

Lua 1.0

Lua 5.2

Lua 5.1
Lua 5.0

Lua4.0

10

Scripting

● Scripting language x dynamic language
– scripting emphasizes inter-language communication

● Program written in two languages
– a scripting language and a system language

● System language implements the hard parts of the
application
– algorithms, data structures

– little change

● Scripting glues together the hard parts
– flexible, easy to change

11

Lua and Scripting

● Lua is implemented as a library
● Lua has been designed for scripting
● Good for embedding and extending
● Embedded in C/C++, Java, Fortran, C#, Perl,

Ruby, Python, etc.

12

Scripting in Grim Fandango
“[The engine] doesn't know anything about adventure

games, or talking, or puzzles, or anything else that makes
Grim Fandango the game it is. It just knows how to render a
set from data that it's loaded and draw characters in that set.
[…]

“The real heroes in the development of Grim Fandango
were the scripters. They wrote everything from how to
respond to the controls to dialogs to camera scripts to door
scripts to the in-game menus and options screens. […]

“A TREMENDOUS amount of this game is written in Lua.
The engine, including the Lua interpreter, is really just a small
part of the finished product.”

Bret Mogilefsky

13

Goals: Impact on Uses

14

Embedded Systems

 Samsung (TVs), Cisco (routers), Logitech
(keyboards), Volvo (car panels), Olivetti (printers),
Océ (printers), Ginga (middleware for digital TV),
Verison (set-top boxes), Texas Instruments
(calculators), Huawei (mobiles), Sierra Wireless
(M2M devices), NodeMCU (IoT), …

16

1

17

Goals: Impact on Design

18

“Closures”

● Anonymous functions as first-class values with
lexical scoping

● Now more common in non-functional
languages, but not that common
– closing on variables x closing on values

– other idiosyncrasies

● Few non-functional languages use closures as
pervasively as Lua

19

“Closures”

● Pros
– simple and well-established concept (lambda

calculus!?)

– powerful and empowering feature

– easy to interface with other languages

● Cons
– complex implementation

– syntax too cumbersome for small functions

Tables

● Associative arrays
• any value as key: strings, numbers, objects, etc.

● Only data structure mechanism in Lua
● Tables implement many data types in simple

and efficient ways
– sets, arrays, sparse matrices, lists, structures

● Tables in Lua are also used for several other
purposes
– global variables, modules, objects and classes

Tables

● Pros
– simple semantics

– powerful

– easy to interface with other languages

● Cons
– emulation of other structures are not as good as

“the real thing”

– complex implementation

22

Exception Handling

● All done through two functions, pcall and
error

try {
 <block/throw>
}
catch (err) {
 <exception code>
}

local ok, err = pcall(function ()
 <block/error>
end)
if not ok then
 <exception code>
end

23

Exception Handling

● Pros
– simple semantics

– no extra syntax

– simple to interface with other languages

● Cons
– verbose

– try is not cost-free

24

● Old style:

● New style:

Iterators

local inv = {}
table.foreach(t, function (k, v)
 inf[v] = k
end)

for w in allwords(file) do
 print(w)
end

25

function allwords (file)
 local line = io.read(file)
 local pos = 1
 return function ()
 while line do
 local w, e = string.match(line, "(%w+)()", pos)
 if w then
 pos = e
 return w
 else
 line = io.read(file)
 pos = 1
 end
 end
 return nil
 end
end

26

Iterators

● Pros
– easy to interface with other languages

– simple

● Cons
– cannot traverse nil

– not so simple as explained

Modules

● Tables populated with functions

● Several facilities come for free
• submodules
• local names

local m = require "math"
print(m.sqrt(20))
local f = m.sqrt
print(f(10))

local math = require "math"
print(math.sqrt(10))

Modules

● Pros
– needs very few new features

– easy to interface with other languages

– flexible

● Cons
– not as good as “the real thing” (regarding syntax)

– too dynamic (?)

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Objects

● first-class functions + tables ≈ objects
● syntactical sugar for methods

• handles self

Delegation

● field-access delegation (instead of method-
call delegation)

● when a delegates to b, any field absent in a
is got from b
• a[k] becomes (a[k] or b[k])

● allows prototype-based and class-based
objects

● allows single inheritance

Delegation at work

a:foo(x) a.foo(a,x)

k = 0
delegate:

"class": a:
foo = function ...
 ...

Objects

● Pros
– flexible

– easy to interface with other languages

– clear semantics

– needs few new features

● Cons
– may need some work to get started

– no standard model (DIY)

33

Perspective (in the small)

● Tables (associative arrays) and closures are
two basic concepts that proved to be extremely
flexible and general.

34

Perspective (in the large)

● No language is truly general-purpose
● Any design involves trade-offs
● Different languages prioritize different goals to

solve trade-offs
● Lua has a unique set of goals

– simplicity, portability, scripting

