- Programming i0S in Lua
e - N : |
~ A bridge story
Jean-Luc Jumpertz
@JLJump

October 14, 2016

CodeFlow

Live Application Development Environment

foriQOS, tvOS & macOS
..;" ——) =

CodeFlow

Live Application Development Environment
foriOS, tvOS & macOS

Goals of the i0OS bridge

+141m +164 m +57m +164 m +141m

, M2 ‘
P M M3)

<« Lua i0S — »

286 m 560 m 560 m 560 m 286 m
392 m 2252 m 7239 m

Enable the development of iOS apps in Lua using the native OS SDK
Make the use of the native SDK feel natural in Lua
Make it easy for a Swift or ObjC developer to move to Lua

= Transparent integration between Lua and iOS

Not the same objective as some other bridges

Exposing Lua-specific features to the iOS native world was not in the scope, nor was the
definition of a Swift / ObjC version of the Lua C API.

Low-level aspects of the native world had to be hidden from the Lua code

8

L.

¥

EF X

B, L

P —

Mixing Lua and native types

Different typing systems
Lua: typed values; untyped function parameters
C world: typed variables and parameters; ABI
Calling native from Lua: convert parameters to the expected types

Easy for base types, more complex for structured types, objects,
collections...

Doing this conversion is the first role of a bridge
Example: expose a struct to Lua
Pseudo-object with constructor, accessors, ... and methods

Automatic Lua table — struct conversion in function calls

local CGPoint

struct.CGPoint:_structInterface { x = 0.0, y 0.0

. local aPoint = struct.CGPoint (100, 50)
struct CGPoint { aPOint-X — 2@0
CGFloat x; . .
CGFloat y; self.view.center = aPoint
};
self.view.center = { x = 150, y = aPoint.y + 20 }

C Lua

Making Memory Models Coexist

Different memory models
Lua: garbage collector

ObjC runtime: automatic reference counting

Making

Different memory mot

Lua: garbage colls

Create Retain

ODbjC runtime: aut

Object B
+1

Object B
+2

Making Memory Models Coexist

Different memory models

Lua: garbage collector

ObjC runtime: automatic reference counting
Managing objects lifecycle

A native object passed to the Lua runtime is retained until GC-ed, and released by
its finalizer metamethod

A Lua value passed to the native world maintains a Lua reference to prevent GC
(LuaL_ref) and remove this reference when not used anymore. (luaL_unref)

Making Memory Models Coexist

Different memory models

Lua: garbage collector

ObjC runtime: automatic reference counting
Managing objects lifecycle

A native object passed to the Lua runtime is retained until GC-ed, and released by
its finalizer metamethod

A Lua value passed to the native world maintains a Lua reference to prevent GC
(LuaL_ref) and remove this reference when not used anymore. (luaL_unref)

The retain cycle problem

It is possible from Lua, to create a retain cycle between native objects

Making Memory Models Coexist

Different memory models

Lua: garbage collector

ObjC runtime: automatic reference counting
Managing objects lifecycle

A native object passed to the Lua runtime is retained until GC-ed, and released by
its finalizer metamethod

A Lua value passed to the native world maintains a Lua reference to pre
(LuaL_ref) and remove this reference when not used anymore. (lual_un

Object A

The retain cycle problem e

It is possible from Lua, to create a retain cycle between native objects

Object B
+1

Making Memory Models Coexist

Different memory models

Lua: garbage collector

ObjC runtime: automatic reference counting
Managing objects lifecycle

A native object passed to the Lua runtime is retained until GC-ed, and released by
its finalizer metamethod

A Lua value passed to the native world maintains a Lua reference to prevent GC
(LuaL_ref) and remove this reference when not used anymore. (luaL_unref)

The retain cycle problem
It is possible from Lua, to create a retain cycle between native objects
= memory leak!
Weak object references are the solution

Object reference getters: weakRef and strongRef
local weakSelf = self.weakRef

A weak reference become an all-nil object when the referenced object is
deallocated

Running Lua in a Threaded World

Lua runs as a single thread, while the host OS is heavily multi-threaded
In an iIOS app, code execution is triggered by user or external events
= \We can not control in which thread our Lua methods are called!

The iOS bridge has to make Lua work in a multi-threaded environment

Running Lua in a Threaded World

Lua runs as a single thread, while the host OS is heavily multi-threaded
In an iIOS app, code execution is triggered by user or external events
= \We can not control in which thread our Lua methods are called!

The iOS bridge has to make Lua work in a multi-threaded environment

Our solution:

Every top-level Lua code invocation runs in its own Lua thread (i.e.
lua_State)

A simple scheduler allows to execute only one Lua thread at a given
time, with well-defined deschedule points

Looks simple but works great in practice!

e A

anslation

Tr

5 =1 =)

N

P
*4
e

About Native Design Patterns

An APl is not just about types and function: how to use it is even more
Important.

Typical design patterns define the expected way to use the APIs.

The iI0OS / macOS SDKs rely on strong design patterns and
conventions: MVC, delegation, observing, target-action...

Making these design patterns feel natural in Lua is key for the bridge
usability!

Now, a few examples of design patterns adaptation to Lua:

Now, a few examples of design patterns adaptation to Lua:

Pattern 1: Subclass to Customize

This is how Controllers work in iOS.

= We need the possibility to subclass native classes in Lua!

local ViewController = class.createClass ("ViewController", objc.UIViewController)

function ViewController:loadView () \ This creates a Lua subclass

-— Create a view programmatically. of native UIViewController
self.view = objc.UIView:new()

end

function ViewController:viewDidLoad () _
self[ViewController.superclass]:viewDidLoad () Two native methods
self:configureView ()

. _ overriden in Lua
self:addMessageHandler (ViewController, "refreshView")

end

function ViewController:configureView ()
—— Put here the code configuring the controller's view
self.view.backgroundColor = objc.UIColor.whiteColor Two _L_ua methods
end not visible from the

, _ _ native code
function ViewController:refreshView()

-— Update the controller's view
self:configureView()
—— Other refresh actions

end

return ViewController

Two native methods
overriden in Lua

Two Lua methods
not visible from the
native code

This creates a Lua subclass
of native UIViewController

Pattern 2: delegation

A delegate object is used to customize or control the actions of a SDK object, by
implementing a well-defined API contract declared as a protocol. A delegate object can
be of any class, provided it implements the expected protocol.

A Lua object can be declared as the delegate of a native object.

Publishing a protocol makes the protocol’s methods defined by a Lua class callable from

the native code
/’\ This creates a Lua class

(with no native superclass)
local TableDataSource = class.createClass("TableDataSource")

function TableDataSource:setTableView (tableView)

self.tableView = tableView Instances of this class are
tableView.datasource = self ¢ " | used as ‘data source of a
end native UlTableView object

TableDataSource:publishObjcProtocols "UITableViewDataSource"

function TableDataSource:tableView_numberOfRowsInSection (tableView, section)

local objects = self.objects W
return objects and #objects or 0 Implement mandatory methods of

end r.——— protocol UlTableViewDataSource

function TableDataSource:tableView cellForRowAtIndexPath (tableView, indexPath)
local cell = tableView:dequeueReusableCellWithIdentifier_forIndexPath("Cell", indexPath)
local object = self.objects [indexPath.row + 1]
cell.textLabel.text = object.description
return cell
end

This creates a Lua class
(with no native superclass)

Implement mandatory methods of protocol UITableViewDataSource

Instances of this class are used as ‘data source of a native UITableView object

Pattern 3: closure parameters

Closure (aka ObjC blocks) parameters are used for synchronous or
asynchronous callback in many places of the iOS / macOS SDKs

Lua functions are a perfect match for closure parameters!

This native NSString
method takes a
function CollectionController:setCollectionText(text) closure parameter.

local words = {}
local wordsCount = 0
text:enumerateSubstringsInRange_options_usingBlock

(NSRange (0, text.length),
NsString.Enumeration.ByWords,
function(word, range, effectiveRange)
wordsCount = wordsCount + 1
words[wordsCount] = word
end)
self.textWords = words

self.collectionView: reloadData() _
end You simply pass a

Lua function for this
closure parameter

This native NSString method takes a closure parameter.

You simply pass a Lua function for this closure parameter

P ‘/
o Ny N\ /1
’ ’
@ -
’ ,_‘,.;/
- L e

- TN

z

SDK Bindings Generation

Two main components in the bridge

Generic bridge Iibrary: memory & threads management, OO framework, generic type conversion and
function call bridging

Bindings: the specific code that makes the bridge work for a given SDK or
API

I0OS / macOS SDKs are quite big (~1900 header files for iOS, 2300 for macOS)
= Bindings generation has to be automated
Use clang (llvm) for parsing C / Objective-C headers

Bindings generation is based on the AST generated by clang

/ Bindings Libraries

C /ObjC Abstract bindings
header syntax o J Bindings Metadata
file tree Jen. \
Bindings Lua Interface

SDK Bindings Generation

/ Bindings Libraries

C/ObjC Abstract o
header syntax bindings Bindings Metadata
: gen.
file tree \
Bindings Lua Interface

Bindings Libraries
Mix of generated code and declarative typing information
Linked with the target application

Include: constants, enums, structs, C functions, classes with methods and
properties, protocols ...

Loaded as Lua modules
local UiGestureRecognizer = require "UIKit.UIGestureRecognizer"

Bindings Metadata
Used by the IDE
Bindings Lua Interface
A user-readable Lua version of the SDK

a .
(- ol
Lol
1 s T
; alin
I
: i | -2, PR
. \ | = - e
- \ . =
F—y \ .me u
D'I“" s m

T T Uk Sl A
PESERE R T
P ?\! d

A e — Mgl f
L AP Qi ;

i CEIE ey BN

7 - e W“J‘.

- -l
famew LT .’.‘.’J %‘s
b R |

Tt

e e L 5
i oo SO -‘qu ‘ s
R W : ‘
e el i |
MEE T L \
e i i -
e / i o . -
;:un L l -‘l =
ety * L M
Ve = - 'j ol — -l‘.- I]
3 1 i - fi ‘. - 1 é E. A=
,, : ; Wbl]/-an’;,.-..' J =3 g
o [| 1 : ' ; / =
5 .Lﬂ‘: L CRTT e -
: it i -
-ms - { = .:_
LY = 3
] b=t * om0

I

£
7
']

INn the IDE for a better o (T
coding experience

Bridge - IDE Integration

Goal: help the developer to use the native SDK(s) in Lua

In the Lua Sou rce COde ed Itor contentView.backgroundColor = UIColor:colorWithHue saturation_brightness_alphah

contentView.layer.borderWidth = cellBo colorwithAlphaComponent
contentView. layer.borderColor = UIColo r
colorWithCGColor

o .t I .t' f f ;DK b I local label = self.label colorWithClColor
au O_COI I Ip e |On O Syl I l O S . . colorWithHue_saturation_brightness_alpha
if label == nil then . = "
. colorWithHue_saturation_brightness_alphah

defined in Bindi Ngs Libraries label = UILabel:newhithF rame(contcolorWithPatternimage
label.autoresizingMask = UiView.Au . th
label. textAlignment = NsText.Align coIorW{thRec?_green_blue_alpha
contentView: addSubview (label) colorWithWhite_alpha

Bridge - IDE Integration

Goal: help the developer to use the native SDK(s) in Lua

In the Lua source code editor

- auto-completion of SDK symbols
defined in Bindings Libraries

For build configuration of target app

- by computing bindings-related
dependencies in Lua modules

In the Lua debugger

 Inspect native types in the
Variables Inspector

- interrupt on error in case of failed
type conversion or wrong
nullability ... and continue
execution after fixing the issue!

contentView.backgroundColor = UIColor:colorWithHue_saturation_brightness_alphah
contentView.layer.borderWidth = cellBo colorwithAlphaComponent

contentView. layer.borderColor = UIColo

local label = self.label

if label == nil then

label.autoresizingMask = UiView.Au
label. textAlignment = NsText.Align
contentView:addSubview (label)

colorWithCGColor
colorWithCiColor

colorWithHue_saturation_brightness_alpha

colorWithHue_saturation_brightness_alphah

label = UILabel:newWithFrame(conte colorWithPatternimage

colorWithRed_green_blue_alpha
colorWithWhite_alpha

th

Breakpoints Halt On Error

esizing.FlexibleWidth

oo [E Hitchhicker — Edited -
) E - @ iPhone Simulator elA(Y|T | X D
Add Source Targets Execution Contexts Debug tools
SOURCE FILES < L LabelCell ua Source Code Functions v| Globals v Dependenciesv| @
I CollectionControlier celllndex, cellCount = celllndex or @, cellCount or 1
& self.cellIndex = cellIndex
1| LabelCell self.cellCount = cellCount
1ual PinchFlowLayout
local contentView = self.contentView
. | h2g2 local contentViewSize = contentView.size
contentView.clipsToBounds = true
BINDINGS LIBRARIES
» QF i0S v £6 local cellHue (cellIndex / cellCount + 8.6) % 1.8
¥ 105 9.3 50K = cor .backgroundColor = cellHue
gy c8 c .layer.borderWidth = cellBorderwicth
> e Hitchhicker 56 co .layer.borderColor = UIColor:colorwithHue_saturation_brightness_alpha (cellhue, 8.9, 0.8,
‘¥ In Xcode project Hitchhicker
local label = self.label
LOADED ITEMS
5 if label == nil then
@ LabelCell-09:48:36
5 abel = UILabel:newWithFrame(contentView.bounds
@.. LabelCell-09:48:33 label.autoresizingMask = UiView.Autoresizing.FlexibleHeight + UiView.Aut
label.textAlignmes Alignaent.Cente
'y h2g2 ot @ cont :addSub (L
N elf. 1 = labe
~|_NSAttributadStrina nd
v 1nread 2
v
»[7 rewindex ©3:48:36 Error: Wrong Y ted ULColor, passed __NSCFNunber.
va
> @ seif [8) Labeicen <xPtes2acer27o>
@ celindex Eo
o celiCount m 70
@ coliBorgerwictn 1o
@ uicolor ©
© uiLavol
> @ Uiview
> @ neText
» @ LabeiCer
@ urFont
Ooantsnlvisw
'Ooomu\mewsae
B wien
= heignt
Oeelll*ue

» [¥ CollectionController

» Giobals

1).CGColor

[NON Hitchhicker — Edited ~

B @ - - @ iPhone Simulator | PO - Vo, e o B
Add Source Targets Execution Contexts Debug tools Breakpoints Halt On Error
{ > L LabelCell Lua Source Code Functions v Globals v | Dependencies v
S 44 ~ == set detault values to paers 1T n1l (waen called Trtl)m lnl’twnhFraIme)
- 5 cellIndex, cellCount = cellIndex or @, cellCount or 1
@ CollectionController ee | . ' X
a7 self.celllndex = celllndex
@ LabelCell @ | self.cellCount = cellCount
i 49
@ PinchFlowLayout e | _ i Content: viss
h2g2 & © 51 local contentView = self.contentView
g 52 local contentViewSize = contentView.size
53 contentView.clipsToBounds = true
BINDINGS LIBRARIES 54
N 55 —— Cell colors and borders
> ")‘iOS “ 56 local cellHue = (cellIndex / cellCount + 0.6) % 1.0
¥ i0s 9.3 SDK = contentView.backgroundColor = cellHue
e . 58 contentView. layer.borderWidth = cellBorderWidth
[‘g)”‘t‘:hh'c"er 59 contentView. layer.borderColor = UIColor:colorWithHue_saturation_brightness_alpha (cellHue, 9.9, 0.8, 1).CGColor
/7 In Xcode project Hitchhicker 60
61 local label = self.label
LOADED ITEMS 62
63 if label == nil then
gu. LabelCell-09:48:36 ® | 6 —- create the label and add it to the content view
65 label = UILabel:newWithFrame(contentView.bounds)
@us LabelCell-09:48:33 “ 66 label.autoresizingMask = UiView.Autoresizing.FlexibleHeight + UiView.Autoresizing.FlexibleWidth
67 label. textAlignment = NsText.Alignment.Center
@ h2g2 ot @ | g8 contentView:addSubview (label)
. . 69 self.label = label
L7 NSAttributedStrina ® | n end
Variables Inspector Lua Console - in function LabelCell:setAppearance, line 57
v Thread 2 3 N (-
;a newindex 09:48:36 Error: Wrong parameter type: expected UIColor, passed __NSCFNumber.
v
> @ seir LabelCell <0x7fe524ce1270>

@ celiindex BEo
0 cellCount m 70

@ celiBorderwidth 123 BTV
@® uicolor O] Class UlColor <0x10b35a268>
@ uiLabel Class UlLabel <Ox10b358f80>
» ® uiview Bl <ox7res2686ebio>
» @ NsText Bl <ox7tes24e9c5c0>
> @ LabelCell @ Class LabelCell <Ox7fe524e9d44(
@ uiFont Class UlFont <0x10f6bd6e8>
O contentView) UIView <0x7fe524ce1bco>
v O contentViewSize Bl cGsize <ox7te526887600>
B width [1243125

B height [64
O cellHue Eos
> B CollectionController:collectionView_cellForltemAtindexPath

P Globals
S ————————————————————

Recap

Needed for this bridge:
A well-defined goal for the iOS bridge.
Solid low-level foundations: types, memory and threads.
Careful transposition of the SDK’s main design patterns.
Bindings generation tools to support large SDKs.

IDE integration to brings additional value to the user.

For More Information

About CodeFlow and live-coding on iOS

Explore https://www.celedev.com

Play with live-coding iOS with Lua: https://www.celedev.com/en/download/

Follow the project: @celedev

About the iOS bridge

Read our Get Started with Lua series
https://www.celedev.com/en/documentation/get-started/get-started-with-lua

Part 2: CodeFlow object framework

Part 3: CodeFlow native bridge

https://www.celedev.com
https://www.celedev.com/en/download/
https://www.celedev.com/en/documentation/get-started/get-started-with-lua-1/

e

'L.--'-.Jll }--_1 G — : | e o

'Js = e

YO

