
A bridge story
Programming iOS in Lua

Lua Workshop 2016

Jean-Luc Jumpertz
@JLJump October 14, 2016

CodeFlow
Live Application Development Environment

for iOS, tvOS & macOS

CodeFlow
Live Application Development Environment

for iOS, tvOS & macOS

instant feedback on real devices

native OS SDK

live code live assets

true debugger

Lua language

live storyboards

native project APIs

A Bridge? What for?
Transparent development of iOS code in Lua

Goals of the iOS bridge

• Enable the development of iOS apps in Lua using the native OS SDK

• Make the use of the native SDK feel natural in Lua

• Make it easy for a Swift or ObjC developer to move to Lua

⇒ Transparent integration between Lua and iOS

• Not the same objective as some other bridges

• Exposing Lua-specific features to the iOS native world was not in the scope, nor was the

definition of a Swift / ObjC version of the Lua C API.

• Low-level aspects of the native world had to be hidden from the Lua code

The foundations

Dealing with type conversions,
memory management, and threads

Mixing Lua and native types
• Different typing systems

• Lua: typed values; untyped function parameters

• C world: typed variables and parameters; ABI

• Calling native from Lua: convert parameters to the expected types

• Easy for base types, more complex for structured types, objects,

collections…

• Doing this conversion is the first role of a bridge

• Example: expose a struct to Lua

• Pseudo-object with constructor, accessors, … and methods

• Automatic Lua table → struct conversion in function calls

struct CGPoint {
 CGFloat x;
 CGFloat y;
};

local CGPoint = struct.CGPoint:_structInterface { x = 0.0, y = 0.0 }

local aPoint = struct.CGPoint (100, 50)
aPoint.x = 200
self.view.center = aPoint
-- ...
self.view.center = { x = 150, y = aPoint.y + 20 }

LuaC

Making Memory Models Coexist
• Different memory models

• Lua: garbage collector
• ObjC runtime: automatic reference counting

Making Memory Models Coexist
• Different memory models

• Lua: garbage collector
• ObjC runtime: automatic reference counting

Object B
+1

Object B
+2

Object B
+1

Object B
+0

Object
A

Create

Object
C

Retain

Object
A

Release

Object
C

Release

Making Memory Models Coexist
• Different memory models

• Lua: garbage collector
• ObjC runtime: automatic reference counting

• Managing objects lifecycle
• A native object passed to the Lua runtime is retained until GC-ed, and released by

its finalizer metamethod
• A Lua value passed to the native world maintains a Lua reference to prevent GC

(luaL_ref) and remove this reference when not used anymore. (luaL_unref)

Making Memory Models Coexist
• Different memory models

• Lua: garbage collector
• ObjC runtime: automatic reference counting

• Managing objects lifecycle
• A native object passed to the Lua runtime is retained until GC-ed, and released by

its finalizer metamethod
• A Lua value passed to the native world maintains a Lua reference to prevent GC

(luaL_ref) and remove this reference when not used anymore. (luaL_unref)
• The retain cycle problem

• It is possible from Lua, to create a retain cycle between native objects

Making Memory Models Coexist
• Different memory models

• Lua: garbage collector
• ObjC runtime: automatic reference counting

• Managing objects lifecycle
• A native object passed to the Lua runtime is retained until GC-ed, and released by

its finalizer metamethod
• A Lua value passed to the native world maintains a Lua reference to prevent GC

(luaL_ref) and remove this reference when not used anymore. (luaL_unref)
• The retain cycle problem

• It is possible from Lua, to create a retain cycle between native objects

Object A
+1

Object B
+1

Making Memory Models Coexist
• Different memory models

• Lua: garbage collector
• ObjC runtime: automatic reference counting

• Managing objects lifecycle
• A native object passed to the Lua runtime is retained until GC-ed, and released by

its finalizer metamethod
• A Lua value passed to the native world maintains a Lua reference to prevent GC

(luaL_ref) and remove this reference when not used anymore. (luaL_unref)
• The retain cycle problem

• It is possible from Lua, to create a retain cycle between native objects
⇒ memory leak!

• Weak object references are the solution
• Object reference getters: weakRef and strongRef 

• A weak reference become an all-nil object when the referenced object is
deallocated

local weakSelf = self.weakRef

Running Lua in a Threaded World

• Lua runs as a single thread, while the host OS is heavily multi-threaded
• In an iOS app, code execution is triggered by user or external events

⇒ We can not control in which thread our Lua methods are called!

• The iOS bridge has to make Lua work in a multi-threaded environment

Running Lua in a Threaded World

• Lua runs as a single thread, while the host OS is heavily multi-threaded
• In an iOS app, code execution is triggered by user or external events

⇒ We can not control in which thread our Lua methods are called!

• The iOS bridge has to make Lua work in a multi-threaded environment

• Our solution:

• Every top-level Lua code invocation runs in its own Lua thread (i.e.

lua_State)

• A simple scheduler allows to execute only one Lua thread at a given

time, with well-defined deschedule points
• Looks simple but works great in practice!

Design Patterns Translation
Making native design patterns
feel natural in Lua

About Native Design Patterns

• An API is not just about types and function: how to use it is even more
important.

• Typical design patterns define the expected way to use the APIs.

• The iOS / macOS SDKs rely on strong design patterns and

conventions: MVC, delegation, observing, target-action…

• Making these design patterns feel natural in Lua is key for the bridge

usability!

Now, a few examples of design patterns adaptation to Lua:

Pattern 1: Subclass to Customize
This is how Controllers work in iOS.

⇒ We need the possibility to subclass native classes in Lua!

local ViewController = class.createClass ("ViewController", objc.UIViewController)

function ViewController:loadView ()
 -- Create a view programmatically.
 self.view = objc.UIView:new()
end

function ViewController:viewDidLoad ()
 self[ViewController.superclass]:viewDidLoad()
 self:configureView ()
 self:addMessageHandler (ViewController, "refreshView")
end

function ViewController:configureView ()
 -- Put here the code configuring the controller's view
 self.view.backgroundColor = objc.UIColor.whiteColor
end

function ViewController:refreshView()
 -- Update the controller's view
 self:configureView()
 -- Other refresh actions
 -- ...
end

return ViewController

Two native methods
overriden in Lua

Two Lua methods
not visible from the
native code

This creates a Lua subclass
of native UIViewController

Pattern 2: delegation
• A delegate object is used to customize or control the actions of a SDK object, by

implementing a well-defined API contract declared as a protocol. A delegate object can
be of any class, provided it implements the expected protocol.

• A Lua object can be declared as the delegate of a native object.

• Publishing a protocol makes the protocol’s methods defined by a Lua class callable from

the native code

local TableDataSource = class.createClass("TableDataSource")

function TableDataSource:setTableView (tableView)
 self.tableView = tableView
 tableView.datasource = self
end

TableDataSource:publishObjcProtocols "UITableViewDataSource"

function TableDataSource:tableView_numberOfRowsInSection (tableView, section)
 local objects = self.objects
 return objects and #objects or 0
end

function TableDataSource:tableView_cellForRowAtIndexPath (tableView, indexPath)
 local cell = tableView:dequeueReusableCellWithIdentifier_forIndexPath("Cell", indexPath)
 local object = self.objects [indexPath.row + 1]
 cell.textLabel.text = object.description
 return cell
end

This creates a Lua class
(with no native superclass)

Implement mandatory methods of protocol UITableViewDataSource

Instances of this class are used as ‘data source of a native UITableView object

Pattern 3: closure parameters
• Closure (aka ObjC blocks) parameters are used for synchronous or

asynchronous callback in many places of the iOS / macOS SDKs

• Lua functions are a perfect match for closure parameters!

function CollectionController:setCollectionText(text)
 local words = {}
 local wordsCount = 0
 text:enumerateSubstringsInRange_options_usingBlock
 (NSRange(0, text.length),
 NsString.Enumeration.ByWords,
 function(word, range, effectiveRange)
 wordsCount = wordsCount + 1
 words[wordsCount] = word
 end)
 self.textWords = words
 self.collectionView:reloadData()
end

This native NSString method takes a closure parameter.

You simply pass a Lua function for this closure parameter

Bindings
Generation

Supporting large OS SDKs
thanks to automation

SDK Bindings Generation
• Two main components in the bridge

• Generic bridge library: memory & threads management, OO framework, generic type conversion and
function call bridging

• Bindings: the specific code that makes the bridge work for a given SDK or
API

• iOS / macOS SDKs are quite big (~1900 header files for iOS, 2300 for macOS)

⇒ Bindings generation has to be automated

• Use clang (llvm) for parsing C / Objective-C headers
• Bindings generation is based on the AST generated by clang

C / ObjC
header

file
clang

Abstract
syntax

tree
bindings

gen.

Bindings Libraries

Bindings Metadata

Bindings Lua Interface

SDK Bindings Generation

C / ObjC
header

file
clang

Abstract
syntax

tree

bindings
gen.

Bindings Libraries

Bindings Metadata

Bindings Lua Interface

• Bindings Libraries

• Mix of generated code and declarative typing information

• Linked with the target application

• Include: constants, enums, structs, C functions, classes with methods and

properties, protocols …

• Loaded as Lua modules 

• Bindings Metadata

• Used by the IDE

• Bindings Lua Interface

• A user-readable Lua version of the SDK

local UiGestureRecognizer = require "UIKit.UIGestureRecognizer"

IDE Integration

Supporting native SDKs
in the IDE for a better

coding experience

Bridge - IDE Integration
• Goal: help the developer to use the native SDK(s) in Lua
• In the Lua source code editor

• auto-completion of SDK symbols
defined in Bindings Libraries

Bridge - IDE Integration
• Goal: help the developer to use the native SDK(s) in Lua
• In the Lua source code editor

• auto-completion of SDK symbols
defined in Bindings Libraries

• For build configuration of target app

• by computing bindings-related

dependencies in Lua modules
• In the Lua debugger

• inspect native types in the
Variables Inspector

• interrupt on error in case of failed
type conversion or wrong
nullability … and continue
execution after fixing the issue!

Bridge - IDE Integration
• Goal: help the developer to use the native SDK(s) in Lua
• In the Lua source code editor

• auto-completion of SDK symbols
defined in Bindings Libraries

• For build configuration of target app

• by computing bindings-related

dependencies in Lua modules
• In the Lua debugger

• inspect native types in the
Variables Inspector

• interrupt on error in case of failed
type conversion or wrong
nullability … and continue
execution after fixing the issue!

Tour completed
What have we seen?

Recap

Needed for this bridge:
• A well-defined goal for the iOS bridge.
• Solid low-level foundations: types, memory and threads.
• Careful transposition of the SDK’s main design patterns.
• Bindings generation tools to support large SDKs.
• IDE integration to brings additional value to the user.

For More Information
• About CodeFlow and live-coding on iOS

• Explore https://www.celedev.com

• Play with live-coding iOS with Lua: https://www.celedev.com/en/download/

• Follow the project: @celedev

• About the iOS bridge

• Read our Get Started with Lua series  

https://www.celedev.com/en/documentation/get-started/get-started-with-lua

• Part 2: CodeFlow object framework

• Part 3: CodeFlow native bridge

https://www.celedev.com
https://www.celedev.com/en/download/
https://www.celedev.com/en/documentation/get-started/get-started-with-lua-1/

Thank You!

Questions?

Jean-Luc Jumpertz
@JLJump

www.celedev.com
@celedev

