
Lua’s coroutines: the secret sauce in
Nmap’s Scripting Engine

Lua Workshop 2017

Patrick Donnelly
Software Engineer
2017 October 16th

Lua Workshop 2017 October 16th2

Patrick Donnelly

● Started as a WoW Addon lurker on lua-l: batrick@batbytes.com
● Got excited finding a few bugs in Lua which led to...
● Got involved with the Nmap project through Google Summer of Code as a student:

2008 and 2009. Mentored students from 2010-2014.
● Outside of Lua: went to graduate school at University of Notre Dame for a PhD and now

work on the Ceph file system at Red Hat.

`whoami`

mailto:batrick@batbytes.com

Lua Workshop 2017 October 16th

What’s Nmap?
● Massively parallel network

reconnaissance tool to find:
○ online hosts
○ open ports
○ OS running on hosts
○ network layout/security
○ everything there is to know

about the server (NSE!)

3

$ nmap -p 80 --script 'safe and default' www.google.com

Starting Nmap 7.60 (https://nmap.org) at 2017-10-14 17:44 PDT

Nmap scan report for www.google.com (216.58.216.4)

Host is up (0.025s latency).

Other addresses for www.google.com (not scanned): 2607:f8b0:4007:804::2004

rDNS record for 216.58.216.4: lax02s21-in-f4.1e100.net

PORT STATE SERVICE

80/tcp open http

| http-robots.txt: 214 disallowed entries (15 shown)

| /search /sdch /groups /index.html? /? /?hl=*&

|_/?hl=*&*&gws_rd=ssl /imgres /u/ /preferences /setprefs /default /m? /m/ /wml?

|_http-title: Google

Nmap done: 1 IP address (1 host up) scanned in 1.33 seconds

Lua Workshop 2017 October 16th4

● Parallel network script
execution framework

● Scripts execute concurrently
performing advanced and
specific network
reconnaissance against the
host.

● NSE Includes hundreds of
scripts and libraries

● Started as a GSOC project by
Diman Todorov in 2008

Nmap Scripting Engine

Scripts

NSE

Nmap’s NSOCK Asynchronous
Networking Library

Lua Workshop 2017 October 16th5

Example Script
local http, stdnse = require "http", require "stdnse"

description, author = "get the web page title", "Patrick"

categories = {"default", "safe"}

function portrule(host, port) return port.number == 80 end

function action(host, port)

local resp = http.get(host, port, stdnse.get_script_args(SCRIPT_NAME..".url") or "/")

local title = string.match(resp.body, "<[Tt][Ii][Tt][Ll][Ee][^>]*>([^<]*)</[Tt][Ii][Tt][Ll][Ee]>")

return title

end

Should the script run?

Script’s main function

Lua Workshop 2017 October 16th6

$ nmap -p 80 --script $(pwd)/http-title.nse www.google.com

Starting Nmap 7.60 (https://nmap.org) at 2017-10-08 21:18 PDT

[...]

Nmap scan report for www.google.com (216.58.217.196)

Host is up (0.022s latency).

[...]

PORT STATE SERVICE

80/tcp open http

|_http-title: Google

Nmap done: 1 IP address (1 host up) scanned in 0.46 seconds

http://www.google.com

Lua Workshop 2017 October 16th7

● Each script is
instantiated in a
coroutine which tests
(rule function) the host
and then gathers
information (action)

● Script threads are run
concurrently, network
I/O causes scripts to
yield

Concurrent Script Execution

http-title

Nmap’s NSOCK Asynchronous
Networking Library

NSE

coroutine.resume

sock:read()

coroutine.yield

Lua Workshop 2017 October 16th8

But can it run emacs?

● NSE maintains tables of pending/waiting
scripts.

● Also, has a generator which produces the
next scripts to run (to limit the number of
active scripts)

● Defines mechanisms for libraries to yield
and restart scripts (used by nsock to
resume a script once data is available)

● Most of it is in nse_main.lua (1500LOC)
● NSOCK limits script parallelism (limits # of

active sockets / see also
--max-parallelism)

Challenge: Build an OS

http-title

Nmap’s NSOCK Asynchronous
Networking Library

NSE

sock:connect()

nse_resume()
nse_yield()

Waiting pending

coroutine.resume

Lua Workshop 2017 October 16th9

Mutual exclusion for coroutines? … Why

● Scripts sometimes need to limit
concurrency doing network operations

● First instance of the problem: whois
script which gets WHOIS data from
IANA servers. Doing WHOIS lookups for
hundreds of target hosts results in
getting banned. Who knew?

Challenge: Mutual
Exclusion

$ nmap -p 80 --script whois-domain.nse www.google.com

[...]

80/tcp open http

Host script results:

| whois-domain:

| Domain name record found at whois.verisign-grs.com

| Domain Name: GOOGLE.COM\x0D

| Registry Domain ID: 2138514_DOMAIN_COM-VRSN\x0D

| Registrar WHOIS Server: whois.markmonitor.com\x0D

| Registrar URL: http://www.markmonitor.com\x0D

| Updated Date: 2011-07-20T16:55:31Z\x0D

| Creation Date: 1997-09-15T04:00:00Z\x0D

[...]

Lua Workshop 2017 October 16th10

mutex = stdnse.mutex(obj)

-- e.g. stdnse.mutex “my-script.x-critical-section”

mutex “lock”

mutex “done” -- yes, I feel bad about that argument name

mutex “trylock” -- joke, no one ever uses this

NSE Mutexes

Lua Workshop 2017 October 16th11

● whois-*nse to serialize lookups
● http cached GETs, to avoid concurrent GETs of the same page
● Preventing concurrent SSL cert lookup + caching
● HTTP “slowloris” attack; only one attack at a time

Where are Mutexes used?

Lua Workshop 2017 October 16th12

Oh no, we’re actually building a kernel…

● By default, a script is limited to doing
one nsock operation at a time which
prevents parallel network operations.

● Use case: http-spider library that does
parallel GET requests against a target
www server.

Challenge: Multitasking Scripts

http-spider www

GET /

GET /img

GET /css

Lua Workshop 2017 October 16th13

local httpspider = require “httpspider”

action = function(host, port)

 local maxpages = stdnse.get_script_args(SCRIPT_NAME .. ".maxpagecount") or 1

 local tries = stdnse.get_script_args(SCRIPT_NAME .. ".tries") or 5

 local dump = {}

 local crawler = httpspider.Crawler:new(host, port, nil, { scriptname = SCRIPT_NAME, maxpagecount =
tonumber(maxpages) })

 crawler:set_timeout(10000)

 -- launch the crawler

 while(true) do

local start = stdnse.clock_ms()

local status, r = crawler:crawl()

if (not(status)) then break end

local chrono = stdnse.clock_ms() - start

dump[chrono] = tostring(r.url)

 end

 -- More processing...

Create the spider

Fetch a URI / crawl the website

Lua Workshop 2017 October 16th14

PORT STATE SERVICE

80/tcp open http

|_http-chrono: Request times for /; avg: 2.98ms; min: 2.63ms; max: 3.62ms

PORT STATE SERVICE

80/tcp open http

| http-chrono:

| page avg min max

| /admin/ 1.91ms 1.65ms 2.05ms

| /manager/status 2.14ms 2.03ms 2.24ms

| /manager/html 2.26ms 2.09ms 2.53ms

|_/examples/servlets/ 2.43ms 1.97ms 3.62ms

Script: http-chrono

Found these URIs for you using
the spider library

Lua Workshop 2017 October 16th15

local http = require “http”

function pget(host, port, urls)

 local threads, responses = {}, {}

 local function do_get(i)

 responses[i] = http.get(host, port, urls[i])

 end

 for i = 1, #urls do

 threads[#threads+1] = stdnse.new_thread(do_get, i)

 end

 return responses

end

Example parallel HTTP GET function:

Launch concurrent thread

No memory sync
needed

Does it work? NO

Lua Workshop 2017 October 16th16

Is this presentation over?

● How do we get scripts to coordinate
with each other?

● Well, let’s borrow from another
synchronization primitive… condition
variables.

Challenge: Thread Synchronization

http-chrono

Nmap’s NSOCK Asynchronous
Networking Library

NSE

http-chrono
:worker

stdnse.new_thread

sock:connect()

poll()

???

Lua Workshop 2017 October 16th17

condvar = stdnse.condvar(obj)

-- e.g. local thread_pool = {}; stdnse.condvar(thread_pool)

condvar “wait” -- wait to be woken up

condvar “signal” -- wake up a sleeper

condvar “broadcast” -- wake up everyone

NSE Condition Variables

Lua Workshop 2017 October 16th18

local http = require “http”

function pget(host, port, urls)

 local threads, responses = {}, {}

 local condvar = stdnse.condvar(threads)

 local function do_get(i)

 responses[i] = http.get(host, port, urls[i])

 condvar “signal”

 end

 for i = 1, #urls do threads[#threads+1] = stdnse.new_thread(do_get, i) end

 repeat

 condvar “wait”

 for i, thread in ipairs(threads) do

 if coroutine.status(thread) == “dead” or responses[i] then threads[i] = nil end

 end

 until next(threads) == nil

 return responses

end

Fixed parallel HTTP GET function:

Wake up the main thread

Loop until threads are
done

Does it work? YES, but:
● Should use worker thread pool
● Needs error checking

Lua Workshop 2017 October 16th19

Challenge: Coroutine Stacks (or “nested”)

NSE

http-spider

scraper.lua

NSock

coroutine.resume(script)

for url in scrape(url) do

http.get(host,port,url)

yield(NSE_YIELD)

● Yields across
multiple threads
requires changes to
Lua’s coroutine
library.

Lua Workshop 2017 October 16th20

int nse_yield (lua_State *L, lua_KContext ctx, lua_KFunction k)

{

 lua_getfield(L, LUA_REGISTRYINDEX, NSE_YIELD);

 lua_pushthread(L);

 lua_call(L, 1, 1); /* returns NSE_YIELD_VALUE */

 return lua_yieldk(L, 1, ctx, k); /* yield with NSE_YIELD_VALUE */

}

NSE coroutine yield tags

Local NSE_YIELD_VALUE = {}

local function handle (co, status, ...)

if status and NSE_YIELD_VALUE == ... then -- NSE has yielded
the thread

 return handle(co, resume(co, yield(NSE_YIELD_VALUE)));

else

 return status, ...;

end

 end

 function coroutine.resume (co, ...)

return handle(co, resume(co, ...));

 end

Called by nsock library

Defined by NSE. New
coroutine.resume called by
scripts/libraries

See also recent discussion on lua-l:
http://lua-users.org/lists/lua-l/2015-09/msg00316.html

http://lua-users.org/lists/lua-l/2015-09/msg00316.html

Lua Workshop 2017 October 16th21

NSE Base Thread

nse_main.cc:

void nse_base (lua_State *L)

{

 lua_getfield(L, LUA_REGISTRYINDEX, NSE_BASE);

 lua_call(L, 0, 1); /* returns base thread */

}

nse_main.lua:

 _R[BASE] = function ()

return current and current.co;

 end

nse_nsock.cc:

static int socket_lock (lua_State *L, int idx)

{

 unsigned p = o.max_parallelism == 0 ? MAX_PARALLELISM :
o.max_parallelism;

 int top = lua_gettop(L);

 nse_base(L);

 lua_rawget(L, THREAD_SOCKETS);

Lua Workshop 2017 October 16th22

But re-implementing in Lua code is so fun!

● Idea: we’d like to link to libssh2 to run
scripts against ssh servers

● Problem: how do we get libssh2 to
play nice with other scripts by using
our networking framework?

● Naive solution/surrender: just accept
ssh sessions block the process

Challenge: Not re-inventing network libraries

#include <libssh2.h>

int libssh2_session_handshake(

LIBSSH2_SESSION *session,

libssh2_socket_t socket)

Just a file
descriptor

Lua Workshop 2017 October 16th23

● Each ssh session
allocates a socketpair

● SSH gets one end of
the socket to talk to
non-blocking

● Benefit: we now get
network I/O
parallelism when
using libssh2.

Solution: Give SSH a UNIX socket
ssh2.session_open(host,port)

socketpair(s1, s2)

libssh2_session_handshake(s1) 20 = write(s1)

-EAGAIN = read(s1)

filter(s2)

20 = read(s2)

sock:write(buf,20)

40 = sock:read()

libssh2_session_handshake(s1)

LIBSSH2_ERROR_EAGAIN

40 = read(s1)

40 = write(s2, buf, 40)

Cool! We’re calling methods on
a socket userdata that may
yield from C++! (lua_callk)

Lua C++

Lua Workshop 2017 October 16th24

Patrick Donnelly

pdonnell@redhat.com

https://nmap.org/

Conclusion: coroutines are awesome!

mailto:pdonnell@redhat.com
https://nmap.org/

