
IUP Next 
New Modern Backends for the 

Cross-Platform Native GUI Library

Lua Workshop 2017

Mac/Cocoa    iOS/CocoaTouch    Android    Web/DOM 

Eric Wing
blurrrsdk.com 

@ewingfighter / @BlurrrSDK

Chris Matzenbach
cmatzenbach@gmail.com



My Background:  
Worn lots of hats



Globalstar: Satellites & Rockets

• Global communication system based on constellation of satellites 
and ground stations 

• Launch satellites into space with rockets! 

• (Not relevant for this talk, but I’m told it sounds cool)



From Cross-platform to Native Cocoa

• Cross-platform, Scientific Visualization 

• End of the Unix Wars => Microsoft 
Windows domination 

• Mac OS X: A Unix with a user-friendly UI 

• Meld cross-platform OpenGL sci-viz with 
native Cocoa UI for best experience



LuaCocoa

• Wrote world’s first full-featured bridge between Lua & Cocoa 

• Obj-C runtime + libffi + Mac OS X 10.5 BridgeSupport 

• Complete API coverage including C APIs 

• Dual mode: Obj-C garbage collection & traditional 

• PowerPC/Intel, 32-bit/64-bit Universal Binaries



Beginning iPhone Games Development



Commercial Game Engines

• Primary platforms: iOS & Android 

• Also: Mac & Windows

Corona SDK 
(Lua)

Platino 
(JavaScript)





IUP (Portable User Interface)
• Cross-platform Native GUI library


• GUI-only (not bloated kitchen sink)


• From PUC-Rio (same as Lua)


• MIT License


• Current Active Backends:


• Windows


• GTK2 & GTK3


• Motif


• Haiku



Why IUP? 
Let me try to paint a picture with my story

• Needed cross-
platform native-ish 
GUI tools for Blurrr 
SDK (blurrrsdk.com)


• Launcher to 
generate native IDE 
projects

Android 
Studio

Visual 
Studio Makefiles XcodeQt 

Creator

http://blurrrsdk.com


Game GUIs possible,  
but not ideal for requirements

Blurrr SDK Particle Editor made with Nuklear (game) GUI 



The Usual Suspects
• Blurrr SDK supports dev on 

Windows, Mac, Linux, Raspberry 
Pi


• Make apps for Windows, Mac, 
Linux, Pi, iOS, Android


• wxWidgets, Qt, Java, Tk, 
NodeWebKit, etc.


• Decided to try QtQuick



RAM Usage Comparison 
Mac OS X 10.12

Qt Version

IUP Version

Apple 
Calculator  

for reference

More RAM

Less RAM



RAM Usage Comparison 
Ubuntu 12.04LTS

Qt Version

IUP Version

gcalctool 
for reference

More RAM

Less RAM



Qt Launch Time (slow)



Native/IUP Launch Time (fast)



Then Raspberry Pi happened



Oh, yeah. IUP.



Why does native UI matter?

• Already mentioned RAM & Performance


• Also usability conventions



Cocoa Discontinuous Text Selection

1.Can select text vertically 

1. Can cut & paste 

2. Can select multiple 
discontinuous sections 

1. Can cut & paste



Find Buffer: 
Cmd-E, Cmd-G 

Native (top)  
vs.  

Java Android Studio (bottom) 

1.Cmd-E to put into Find 
Buffer 

2. Cmd-G to find next



Services & Menu Built-ins 
Native (left) vs. Qt (right)

1. Make Upper Case



Services & Menu Built-ins 
Native (left) vs. Qt (right)

2. Ctrl-Cmd-D (or Services Menu) to activate Dictionary



Accessibility

• Microsoft, Apple, Google spend enormous effort to make their platforms 
accessibile to people with special needs


• Built-in behaviors are automatic if you use their stuff


• Many non-native app miss this


• Selling to the government usually requires apps to be Accessible



Accessibility -> Display

• Fn-Fn to activate



Microphone Speech-to-Text 
Native (left) vs. Qt (right)

• Fn-Fn to activate



IUP the research side
• IUP started as a research project for good reason


• How can you make a cross-platform interface when the native interfaces for 
every platform are so drastically different?


• How do you provide access to features that not all platforms may support?


• And how do you do this without constantly changing/breaking the API, 
especially when new platforms are introduced?


• How do you deal with different sizes for widgets


• Since every platform uses a different programming language for their native 
development, how do you deal with this in a flexible and cross-platform way?



IUP Solutions
• IUP’s core and public API are implemented in pure C, because C is the 

one language that every language can talk to


• Platform backends are implemented in each platform’s native language 
using the native widget set


• IUP does not employ language subclassing since that can’t be expected 
to work across all the platforms. 


• Instead IUP uses attributes to set properties



IUP Attribute Solution

• Can scale to cover entire native API features


• Does not require breaking/changing the API


• Unsupported properties on platforms can simply ignore the feature 
request


• Makes IUP simple to learn/use

IupSetAttribute(button, "TITLE", “OK"); 
IupSetAttribute(button, "ACTIVE", "NO"); // disables button



IUP Designed for Language Bindings

• Recognized most people don’t want to write in C, so API was designed for 
easy binding


• Small API


• Attributes help keep it small


• Lua bindings first class citizens


• Lots of other language bindings



IUP LED: Textual Layout Description Format

• Think: Windows XAML, Android XML layout, Apple Interface Builder XIB


• Optional: (can do everything programmatically)


• Normally runtime, but optional compiler to convert to compile time


• Optional use case: Can have different LED files for different platforms 


• Example:

btn = button[ACTIVE=NO]("OK”, action_ok)

dlg = dialog[SIZE = FULLxFULL TITLE = "Test"](btn)



Real app/GUI on left                                            Layout Editor on Right

IupLayoutDialog: (Live) Run-time Layout Editor



Other official IUP accessory libraries

• IupCD (Canvas Draw library)


• Uses the native 2D drawing API on each system to implement “non-
native” widgets (like Qt)


• Easy way to create new, cross-platform widgets


• IupPlot: Plot/graphing library built on IupCD


• IupGL: OpenGL



IupCocoa

• Definition: Cocoa


• The framework (library) you write native Mac applications in


• Provides lots of widgets, e.g. Text, Buttons, Windows, etc.


• Name is pun on “Java”


• Favorite coffee vs. Favorite hot beverage



IupCocoa
• Definition: Objective-C


• The native programming language you write Cocoa applications in


• It is a 100% pure superset of C (which C++ can’t even claim)


• Obj-C adds an object system and powerful runtime inspired by 
Smalltalk.


• (Strange) Syntax was designed to avoid conflicting with C/C++, which 
allows intermixing all 3 languages in the same file



Quick Overview on Implemented things

• Cocoa is pretty straight-forward and matches well with Windows & GTK


• IupCocoa is not finished but…


• It is also further along than most people think


• (I’m now shipping the Mac IUP version of BlurrrGenProj seen earlier.)



Dialogs, Labels, & Buttons



(Input) Text



Progress Bar



Tree



Calendar



File Dialogs



Canvas



Some Impedance Mismatches

• Event Loop


• Application Menu system



Cocoa Event Loop
• Cocoa wants to control the event loop


• You are not supposed to pump it yourself


• Yes, there are ways around this, but has been known to break things


• Modal windows


• menu bar behavior


• Game Center



Application Menu

• Using:	 IupSetGlobal("MENU", (const char*)main_menu);


• Instead of per-window:  IupSetAttributeHandle(dialog, "MENU", main_menu);



One More Thing…GNUStep
• Courtesy: Germán Arias



That’s IupCocoa

• But…



But it’s 2017… 
Mobile Revolution started in 2007

• 270 million PCs shipped in 2016 (Gartner)


• 1.5 billion smartphones shipped in 2016 
(Gartner)


• PC sales declining



Google switching to Mobile-first indexing

• Mobile versions of sites will be used for 
ranking



Mobile game revenue surpassed PC & Consoles 



IUP for iOS & Android

• Good News: IUP's original design seems flexible enough to handle this


• “Attributes” instead of too many hardcoded APIs


• We have “IupDialog” and not “IupWindow”


• But… requires some careful design/thought on how things should map/
work on mobile



Example “Thought-Exercise”: 
What does “Dialog” mean for mobile?

• “Dialog” is a “Window” on Desktop


• iOS: While a UIWindow exists, the paradigm isn’t good for multiple dialogs


• The more common and useful construct is the UIViewController


• Android: The corresponding construct is an Activity



iOS: UIWindow is not the 
best mapping for Dialog

• Not obvious how to deal with multiple dialogs


• Use Safari as an example of multiple UIWindows


• Safari “switching” behavior is not built-in



iOS UIViewController 
& Android Activity

• Both UINavigationController & Activity drill down 
& back through a stack of views


• Users expect this behavior


• Behavior is built-in



So let’s implement it and put it all together

• Demo: Show a singular IUP program


• Runs native on all platforms


• Feels natural for every platform



Demo Program: Create Dialog & Button (recursive)
var g_buttonCounter = 0; 

func BlurrrMain() -> Int32 { 
    IupOpen(nil, nil) 
    IupSetFunction("ENTRY_POINT", IupEntryPoint); 
    IupMainLoop() 
    return 0; 
} 
func IupEntryPoint(_ ih:OpaquePointer?) -> Int32 { 
    g_buttonCounter = 0 
    return ShowNewDialogCallback(nil) 
} 

func ShowNewDialogCallback(_ ih:OpaquePointer?) -> Int32 { 
    let button = IupButton(nil, nil) 
    IupSetStrAttribute(button, "TITLE", "Iup Button \(g_buttonCounter)") 
    IupSetCallback(button, "ACTION", ShowNewDialogCallback) 
    let dialog = IupDialog(button) 
    IupSetAttribute(dialog, "SIZE", "QUARTERxQUARTER") 
    IupSetStrAttribute(dialog, "TITLE", "Iup Dialog \(g_buttonCounter)") 
    IupShow(dialog) 
    g_buttonCounter += 1 
    return IUP_DEFAULT 
} 

*Fun Fact: Written in Swift using bindings to IUP



Ubuntu Linux (amd64)



Raspberry Pi (Raspbian)



Windows

*Fun fact: Swift on Windows is still extremely experimental



Mac



iOS



Android



IupCocoaTouch

• Very similar to Mac


• APIs are a little different (UIView instead of NSView), but semantically 
similar



iOS Event Loop

• Apple controls the event loop (same as Mac)


• More rigid than Mac



IupAndroid

• All Android apps must use the Android SDK which is in Java


• You cannot escape this


• Android GUI APIs are completely in Java


• Android NDK was later added to allow for C & C++ development



The Android NDK “Really Does Suck”
• John Carmack - “Half-baked”, “Really does suck” 

• Second class citizen on Android 

• Almost no Android libraries are provided in the NDK 

• Lots of things are broken, slow to get fixed, if ever 

• Word on the street (few years ago): Only 2 full-time Google engineers + a few part time 

• Consistent with number of Google employees on NDK mailing list 

• No slight intended on those 2 engineers. Valiant effort. Google treats them as the black sheep.  

• Google: Among the richest, powerful companies in the world with #1 dominance in mobile, 
and this is the best effort Google chooses to put in. Shameful. 

• Android is 9 years old. Our pleas are ignored. Public ridicule is the only tool we have left.



Android’s obsession with (Java) 
God Objects

• Context class


• Activity class


• Application class



Android file system and the .apk

• Files that ship with your app are inside the “.apk” (think .zip) 

• Can’t use standard C file family (fopen, fread) 

• Needs a “God” object from a Context class to get an AAssetManager 

• AAsset* AAssetManager_open(AAssetManager *mgr, const 
char *filename, int mode); 

• Existing cross-platform (ANSI) C/C++ libraries won’t work without 
modification



An Activity is a Context

• Common mistake is to try to keep a 
reference to an Activity for the life of a 
program


• They typically come-and-go in most apps



An Application is a Context

• Created my own IupApplication class


• Will provide a public way to retrieve it to 
help other libraries in your app


• Does mean that any other library that uses 
this same approach is incompatible with 
IupAndroid



Android Event Loop

• Android controls the event-loop. PERIOD.


• Never block the event loop


• You cannot manually pump the event loop


• Will impact IupMainLoop and start up sequence


• Also, there is no "int main” because we are Java, not C



Android (main) UIThread
• All GUI APIs must be called from the UIThread


• Working around the event-loop design with a background thread is usually a 
mistake


• Makes you second-class citizen on the platform (can’t directly call APIs)


• Road-block when using single-threaded languages


• Must understand threading model of your app, the library, and the OS


• Callbacks must be redirected back to the proper thread of the handler


• Performance usually suffers because of so many locks, context switches



IupEmscripten (Web Browser) 
Chris Matzenbach

• One other major platform to discuss


• Native vs. Web fight is not over



IupEmscripten
Chris Matzenbach



Core Idea

• Do I write a native application or a web application?  Must 
make a choice


• Why not treat the web browser like any other platform?


• This is our core idea: let’s take our native programs and 
deploy them to the web browser - as if it were any other 
platform



JavaScript - the problem 
child

• While many options exist for native development, when it comes to the web, 
there’s only one choice - JavaScript


• In the past this has always required a re-write for native apps


• Solution?  The Emscripten compiler, released in 2014





Emscripten and the Birth of 
the Idea

• What is Emscripten? C/C++ to JavaScript compiler, released in 2013


• The Unreal team ported Unreal Engine 3 to the browser using 
Emscripten in just four days 

• While impressive, everything is drawn onscreen. We need something 
better - native web widgets


• IupEmscripten - the first cross-platform library using the browser’s 
own native widgets



How does this work?

• In order to render native web widgets, we need to call into JavaScript 
to access the DOM APIs


• Emscripten didn’t intend for us to modify the JavaScript side


• We do have the ability to call into external JavaScript functions - from 
there, we can access the necessary APIs to draw native widgets


• This is what differentiates us from other cross-platform libraries that 
also compile for the web



External Function Example



Widget Creation
• User defines the widget they want in Iup, which we can access on the C-side.  How do 

we get this over to JavaScript?


• Emscripten does not allow us to pass objects over the C/JavaScript bridge


• No stack API like in Lua


• We can, however, pass integers across


• We utilize a global ID map that maps integers to objects, serving as a proxy and 
allowing us object access on both sides of the bridge


• Each side references the same ID along with their own ‘interpretation’ of the widget



Label, Input Text and Button
• Here we have a super simple form, showing the label, input 

text and button widgets



Dialog, Label and Button
• Here we have an external dialog (aka “pop-up”) with a simple label and button



List - Dropdown
• Standard dropdown list; sizes automatically based off of largest item



List - Multiple
• Multiple selection list; user can hold down command/

control to select/deselect multiple items within list



List - Editbox+Dropdown
• List type that functions as a dropdown, but also allows user 

to type in the input box, narrowing down the selections



Memory Management
• Emscripten follows a C/C++ paradigm and assumes we 

manage memory ourselves - no garbage collector


• Iup manages the memory for us through the use of Map 
and UnMap functions


• However, any objects we create on the JavaScript side will 
be garbage collected once we return from the external 
function call


• How do we prevent this from happening?



The Global ID Map!!

• The answer is our global ID map - because a reference to 
the object exists in the ID map, it prevents the object from 
being garbage collected by JavaScript


• Likewise, by calling into JavaScript from Iup’s UnMap 
function, we can remove the object from the ID map, 
ensuring it is garbage collected by JavaScript



Event Loop

• As Eric mentioned, Iup wants to control the Event Loop.  
We cannot let that happen!


• We need to let the web browser and JavaScript control the 
Event Loop.  There is no other option.



What have we learned?

• The native experience Iup promises can be brought to the 
web


• The web backend allows your applications to be more 
portable than ever


• If your user’s device can run a web browser, it can run your 
application


• You no longer have to make the choice between native vs 
web!



Bringing Everything Together

• A few changes to IUP are needed



IUP needed changes 
(for all platforms)

• Rules:


• (Unchanged) Legacy code must continue to still run as before


• But those who want the new platforms must opt-in by conforming to 
the new (slight) changes


• Existing platforms are updated to work with these new changes



IUP Init (Legacy)

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    CreateYourGui(); // your stuff here
    IupMainLoop();
    IupClose();
    return 0;
}



IUP Init (Old vs. New)

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    CreateYourGui(); // your stuff here
    IupMainLoop();
    IupClose();
    return 0;
}

void IupExitPoint()
{
    IupClose();
} 

void IupEntryPoint()
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
} 

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}



IUP Init (Old vs. New)

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    CreateYourGui(); // your stuff here
    IupMainLoop();
    IupClose();
    return 0;
}

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}

void IupEntryPoint() 
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
}

void IupExitPoint()
{
    IupClose();
}

Acts as explicit Opt-in for new  behavior



IUP Init (Old vs. New)

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    CreateYourGui(); // your stuff here
    IupMainLoop();
    IupClose();
    return 0;
}

void IupExitPoint()
{
    IupClose();
} 

void IupEntryPoint()
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
} 

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}



IUP Init on Cocoa/CocoaTouch
void IupExitPoint()
{
    IupClose();
} 

void IupEntryPoint()
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
} 

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}

1. Starts native event loop

2.Calls IupEntryPoint

3.May never return



IUP Init on Android
void IupExitPoint()
{
    IupClose();
} 

void IupEntryPoint()
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
} 

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}

Never gets called

Designated EntryPoint 

for Android



IUP Init on Emscripten
void IupExitPoint()
{
    IupClose();
} 

void IupEntryPoint()
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
} 

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}

1.Must not block

2.Calls IupEntryPoint

3.Returns immediately

main finishes, but our 

application continues to run



IUP Init on Updated Existing Platforms
void IupExitPoint()
{
    IupClose();
} 

void IupEntryPoint()
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
} 

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}

1.Blocks, manually pumps event loop

2.Calls IupEntryPoint on first time

3.Returns on Quit

Used to detect opt-in to 

activate new behavior



Iup Init is cross-platform again 
void IupExitPoint()
{
    IupClose();
} 

void IupEntryPoint()
{
    IupSetFunction(“EXIT_CB", 
                (Icallback)IupExitPoint);
    CreateYourGui(); // your stuff here
} 

int main(int argc, char* argv[])
{
    IupOpen(&argc, &argv); 
    IupSetFunction(“ENTRY_POINT", 
                (Icallback)IupEntryPoint);
    IupMainLoop();
    return 0;
}

• Legacy Apps:


• Don’t design around manually 
pumping the event loop 
(nested IupMainLoop())


• If you need to poll, use 
IupTimer to poll with 
periodic callbacks



Threading Model becomes more rigorous

• Cocoa, CocoaTouch, Android, Emscripten all must be on the main thread


• IUP was ambiguous about threads


• That needs to be formalized to require people to write on the main thread



Putting it all together: 
Final questions & demos

• “How far can I take it?”



Can I use custom or platform-
specific code in my IUP app?

• Yes!



Example: IupBork

• Last year demo: LuaCocoa (Muppet) 
Swedish Chef translator


• Written with LPeg / Lua


• This year: Ported to IUP


• Single cross-platform UI written in IUP


• Native speech synthesizer 
implementation for each platform

bork = re.compile[[
text <- {~ item* ~}
WordChar <- [A-Za-z']
NotWord <- [^A-Za-z']
item <- ProcessedWord / NotWord

ExemptWord <- ‘bork' / 'Bork'

EndOfParagraphPunctuation <- [.!?]%nl 
-> ‘Bork Bork Bork!’

  AccentSyllable <- 'an' -> 'un'
/ 'An' -> 'Un'
/ 'au' -> 'oo'
/ 'Au' -> 'Oo'
/ 'the' -> 'zee'
/ 'The' -> 'Zee'
/ 'v' -> 'f'
/ 'V' -> 'F'
/ 'w' -> 'v'
/ 'W' -> ‘V'

...



IupBork: Windows
Uses ISpVoice via C++



IupBork: Linux
Fork/exec to external process ‘spd-say’



IupBork: Mac
Uses NSSpechSynthesizer via Objective-C or Swift



IupBork: iOS
Uses AVSpechSynthesizer via 

Objective-C or Swift



IupBork: Android
Uses TextToSpeech via Java



IupBork: Emscripten
Uses SpeechSynthesisUtterance via JavaScript/Web

• Yes, convoluted/crazy…


1.  C code including IUP, Lua VM, LPeg all 
compiled to JavaScript via Emscripten


2.  Loading all compiled JS in a web 
browser


3.  Running Lua script inside JS-compiled 
LuaVM inside JS web browser VM


4.  Calling out to native JavaScript/Web 
APIs for speech (and GUI)



Can I integrate my own custom/
native views with IUP?

• Yes!


• (In fact, that’s exactly how we implement IUP in the first place)



Example: IupWeb

• Separate, not part of the main IUP library


• Each platform has a different native web widget


• Native => tiny profile

 web = IupWebBrowser(); 
 IupSetAttribute(web, "VALUE", "https://www.blurrrsdk.com"); 
 dlg = IupDialog(web); 
 IupShow(dlg);



IupWeb: Windows



IupWeb: Linux GTK



IupWeb: Mac



IupWeb: iOS



IupWeb: Android



IupWeb: 
Emscripten



Size is small too



Links
• Blurrr SDK now shipping with “Sneak Preview” IUP


• https://blurrrsdk.com


• Contains templates & examples seen today (e.g 
IupBork, IupWeb)


• Repos:


• https://github.com/ewmailing/IupCocoa


• https://github.com/ewmailing/IupCocoaTouch


• https://github.com/ewmailing/IupAndroid


• https://github.com/ewmailing/IupEmscripten



Please Support Us
• Purchase Blurrr SDK (blurrrsdk.com)


• Donation link at blurrrsdk.com


• Corporate Sponsorships


• Consulting work?


• Volunteers/Contributions


• Google Summer of Code organization


• Maybe LuaLab can help?


• Please spread the word about IUP Next. (Friends, Social Media)



GIST Walk for a Cure
http://www.gistwalksanjose.org



Corona SDK Platino

Adobe Macromedia

@codinginswift

Carlos M. Icaza
June 5, 1966 - May 17, 2016





Thank you
Eric Wing

blurrrsdk.com 
@ewingfighter / @BlurrrSDK

Chris Matzenbach
cmatzenbach@gmail.com


