
Rewriting LuaJIT: Why and How?
Anton Soldatov, IPONWEB

Lua Workshop
Kaunas, 06.09.2018

About IPONWEB

● Building platforms for real-time advertising

● Workloads up to 6M requests per second

● Lua is used for more than 10 years for implementing

business logic in our projects

2

Application server core (C++):
multithreading, networking, coroutine

management, etc.

Business logic (Lua, sandboxed)

Lua in IPONWEB

3

Libraries (Lua) Libraries (C/C++)

● Experience with LuaJIT 1.1 and 2.0

LuaJIT in IPONWEB

4

● Experience with LuaJIT 1.1 and 2.0

● Definitely benefit from the faster interpreter

LuaJIT in IPONWEB

5

LuaJIT in IPONWEB

● Experience with LuaJIT 1.1 and 2.0

● Definitely benefit from the faster interpreter

● Generally benefit from the JIT compiler

6

LuaJIT in IPONWEB

● Experience with LuaJIT 1.1 and 2.0

● Definitely benefit from the faster interpreter

● Generally benefit from the JIT compiler

○ ...but we do not avoid pairs at all costs

7

LuaJIT in IPONWEB

● Experience with LuaJIT 1.1 and 2.0

● Definitely benefit from the faster interpreter

● Generally benefit from the JIT compiler

○ ...but we do not avoid pairs at all costs

● Sandboxing partly reduces Lua/LuaJIT incompatibility tension

8

LuaJIT in IPONWEB

● Experience with LuaJIT 1.1 and 2.0

● Definitely benefit from the faster interpreter

● Generally benefit from the JIT compiler

○ ...but we do not avoid pairs at all costs

● Sandboxing partly reduces Lua/LuaJIT incompatibility tension

● Limited experience with FFI
9

Data feeds

● Inventory lists

● Rules for decision making

10

Data feeds: memory consumption

11

Our main issue with LuaJIT 2.0

We have eventually hit the memory limit on x86-64:

 void *ptr = mmap((void *)MMAP_REGION_START,
 size, MMAP_PROT,
 MAP_32BIT|MMAP_FLAGS, -1, 0);

12

Tried a work-around with FFI

● Decompose feeds into simpler data structures

● Map into native memory

● Build accessors with FFI

13

Tried a work-around with FFI

● Decompose feeds into simpler data structures

● Map into native memory

● Build accessors with FFI

● Performance has degraded

14

Possible solutions

● Migrate to PUC-Rio Lua

15

Possible solutions

● Migrate to PUC-Rio Lua

● Migrate to LuaJIT 2.1

16

Possible solutions

● Migrate to PUC-Rio Lua

● Migrate to LuaJIT 2.1

● Start an own implementation

17

Implementation requirements

● Fix the memory limit

● Become not slower than LuaJIT 2.0

● Target only Linux x86-64

18

Implementation requirements

● Fix the memory limit

● Become not slower than LuaJIT 2.0

● Target only Linux x86-64

● No changes to the language

● Stay as close to Lua 5.1 as LuaJIT 2.0
19

● TValue is 16 bytes (uint64_t + uint64_t)

Fixing the memory limit

20

● TValue is 16 bytes (uint64_t + uint64_t)

● Support for true 64-bit pointers in both VM and JIT

Fixing the memory limit

21

● TValue is 16 bytes (uint64_t + uint64_t)

● Support for true 64-bit pointers in both VM and JIT

● LJ_FR2 trick not needed

Fixing the memory limit

22

● TValue is 16 bytes (uint64_t + uint64_t)

● Support for true 64-bit pointers in both VM and JIT

● LJ_FR2 trick not needed

● A multiplier of 2 was "baked" into the byte code to regain

the SIB mode benefits

Fixing the memory limit

23

Fixing the memory limit: results

● About 30% faster than the FFI work-around for data feeds

● Approximately the same performance in most of other

cases

24

Fixing the memory limit: timeline

● Q2 2015 – Decision to build a new implementation

● 2015-2016 – Development, stabilisation and validation;

pilot migrations

● Q1 2017 – More than 95% production servers moved to

the new implementation
25

Testing: What we started with

● Integrational tests with the application server

● Test stands

26

● Language compliance tests

Testing: What was missing

27

Testing: What was missing

● Language compliance tests

● There are test suites for some implementations, but they

are scattered around

28

Testing: What was missing

● Language compliance tests

● There are test suites for some implementations, but they

are scattered around

● Functional tests for the implementation

29

● Continuously write own tests

Testing: results

30

Testing: results

● Continuously write own tests

● Integrate third party suites into the source tree:

○ Lua 5.1 official test suite

○ Mike Pall's test suite for LuaJIT

○ François Perrad's test suite shipped with lua-TestMore

31

Testing: results

● Continuously write own tests

● Integrate third party suites into the source tree:

○ Lua 5.1 official test suite

○ Mike Pall's test suite for LuaJIT

○ François Perrad's test suite shipped with lua-TestMore

○ Part of Laurent Deniau's test suite from the MAD project
32

Extending the implementation

33

Data feeds: memory consumption

34

Objects from a data feed in memory

35

ujit.seal(data)

36

Properties of sealed objects

● GC traverses objects until the first sealed object

● Thus, all sealed objects must be immutable

37

ujit.seal(data)

38

seal = "seal per se" + immutable

39

 local t = {foo = "bar"}
 ujit.immutable(t)

Introducing immutable objects

40

local t = ujit.immutable({{foo = "bar"}})

-- All of the following throw:

t[1].new = "baz" -- Add
t[1].foo = "baz" -- Modify
t[1].foo = nil -- Remove

immutable: Example 1

41

 ujit.immutable(_G)

immutable: Example 2

42

● Sharing read-only data between instances of the VM

Going further: more features

43

Going further: more features

● Sharing read-only data between instances of the VM

● Interruptible coroutines (non-resumable and resumable)

44

Going further: more features

● Sharing read-only data between instances of the VM

● Interruptible coroutines (non-resumable and resumable)

● Extended Lua and C API for working with tables

45

Going further: more features

● Sharing read-only data between instances of the VM

● Interruptible coroutines (non-resumable and resumable)

● Extended Lua and C API for working with tables

● Tweaks in the compiler

46

Going further: tools

● Sampling profiler

● bit.ly/dumpanalyze – a tool for analyzing debugging info

produced by the JIT compiler (-jdump in LuaJIT)

47

http://bit.ly/dumpanalyze

Conclusions

● It is possible to build an implementation of Lua based on LuaJIT, but

your motivation should be strong enough

● Be prepared to multiple challenges (and fun) while reworking the core

● Be prepared to more challenges when it comes to testing and tools

48

Thank you! Questions?

49

Links

● bit.ly/dumpanalyze

● bit.ly/iow-lua-moscow-2017

● bit.ly/iow-hl-2016 (in Russian)

● bit.ly/iow-hl-2017 (in Russian)

● asoldatov@iponweb.net

● https://t.me/igelhaus

50

https://bit.ly/dumpanalyze
https://bit.ly/iow-lua-moscow-2017
https://bit.ly/iow-hl-2016
https://bit.ly/iow-hl-2017
mailto:asoldatov@iponweb.net
https://t.me/igelhaus

