

What about Pallene?

Roberto Ierusalimschy

Lua Workshop 2022

2

Scripting and Performance

“If it's slow, rewrite it in C”

3

Easier said than done...

● Data mismatch

● Language mismatch

 4

Data Mismatch

● Data has to be transferred between the two languages.

● Data has to be converted between the two languages.

● This process can kill any gains in performance due to a faster
language.

5

Language Mismatch

● Big differences between Lua and C.

● It can be expensive to convert code from Lua to C.

● It can be hard to predict whether it is worth converting.

 6

What about JITs?
● Don't change the language.

● Can achieve quite good performance.

● Hard to implement, port, and maintain.

● Optimization killers.

 7

Programmers can go to great lengths to appease
a JIT. At what point does it become a good idea
to switch to a typed language?

 8

Pallene as Scripting
● Pallene has been designed to act as a system counter-part of

Lua in a scripting architecture.

● To reduce language mismatch, it is a typed subset of Lua.

● To reduce data mismatch, it operates directly on Lua data.

 9

● Pallene is a typed subset of Lua.

Pallene as Gradual Typing

local function addqueen (N:integer, a:{integer}, i:integer)
 if i > N then
 printsolution(N, a)
 else
 for c = 1, N do
 if isplaceok(a, i, c) then
 a[i] = c
 addqueen(N, a, i + 1)
 end
 end
 end
end

 10

● Types allow a simple ahead-of-time (AoT) compilation
approach.

● The subset includes only what is simple to type and can
generate efficient code.
– no metamethods, variadic functions, coroutines
– tables only in tamed forms (e.g., arrays and records)

Pallene as Gradual Typing?

 11

Pallene as Gradual Typing?

local function id (a:{float}) : {float}
 return a
end

Pallene:

local a = id({}) -- Ok
local a = id({3.5, 4.3}) -- Ok
local a = id({nil, 4.0}) -- ?
local a = id(3.5) -- ?
local a = id({“x”, “y”}) -- ?

Lua:

 12

Data Representation
● Reuses Lua's data structures
● Reuses Lua's garbage collector
● Direct access to Lua data. Code bypasses the

C API, as the compiler ensures correctness

 13

How Can Types Help?
● Performance
● Simplicity

 14

Types and Performance
● tag-checking is cheap
● boxing/unboxing is expensive
● Types guide box/unbox and allows local values

to be manipulated unboxed

 15

Types and Simplicity
● No need to deduce types
● No need to recover from wrong assumptions

– (that also helps performance; there is only the fast
path.)

 16

Some Design Principles

● Same selling points from Lua.

● Simple AOT compiler.

● Very simple type system.

● Good on the borders.

● Gradual guarantee.

 17

Selling points

Portable, Small size, Simple, Emphasis on scripting

 18

Simple AOT compiler

Generates C code that can be loaded by the standard
Lua interpreter, as a C module.

Keeps the same standards of portability as Lua itself.

Simplifies the implementation.

 19

Simple type system

The primary goal of the type system is to help the
compiler, in particular to allow unboxing!

Everything else can be handled with any, the dynamic
type. Or, better yet, kept in Lua.

 20

Good on the borders

Real programs are seldom fully translated. Only the
performance-critical parts need optimizations.

The change of one single function from Lua to Pallene
should not worsen the performance.

 21

Gradual Guarantee

Pallene functions should have the same semantics of
their translation to Lua (by removing type annotations),
except for type errors.

Hard to ensure to the letter in a real language like Lua.
Simple solution is to remove features from Pallene,
which makes it less expressive.

 22

 31

 23

 32

 24

Conclusions
● Performance is an always-present concern for dynamic

languages.

● A companion language is an approach for improving the
performance of Lua that seems compatible with its selling
points.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

