
Update on Ravi
Dibyendu Majumdar



A new compiler for Ravi

• In this talk I will present the work I have been doing on a new 
compiler for Ravi. I will cover following areas:

• Benefits of the new compiler framework
• C stack allocation of temporaries, 

• Ability to JIT or AOT compile

• Two languages in one – Ravi and embedded C!

• Challenges faced 

• Future directions



Previous Approach

Lua Parser Byte Code Translate to C
Generate 

machine code
(MIR)



New Approach

New Parser AST Linear IR Translate to C

Compile to 
Shared 
Library 

gcc/clang

JIT Compile
Using MIR

• Compiler project is independent of Ravi
• However final C code generated assumes it’s the Ravi VM – various internal structures of Lua are referenced



Simple Example – Old Version

f = function(a: integer) local b: integer = a + a; return b * 10 end

Generated code snippet

ra = R(1);
rb = R(0);
rc = R(0);
setivalue(ra, ivalue(rb) + ivalue(rc));
ra = R(2);
rb = R(1);
setivalue(ra, ivalue(rb) * 10);



Simple Example – New Version

f = function(a: integer) local b: integer = a + a; return b * 10 end

Generated code snippet (local b eliminated)

// ADDii {local(a, 0), local(a, 0)} {Tint(1)}
{ raviX__i_1 = ivalue(R(0)) + ivalue(R(0)); }

// MOVi {Tint(1)} {Tint(0)}
raviX__i_0 = raviX__i_1;

// MULii {Tint(0), 10 Kint(0)} {Tint(1)}
{ raviX__i_1 = raviX__i_0 * 10; }



Goals

• Create a standalone lexer and parser that are re-usable

• Translate to an Intermediate Representation – not byte code

• C code generation is not generic as requires knowledge of the VM 
details

• Generated C functions look like Lua functions but have no bytecode



Reusable lexer and parser

• Hope is that anyone that wants to play with this should be able to do 
so easily

• Work in progress parser AST dump that should be readable directly in 
Lua (a DSL)



Example of AST dump



Linear IR

• Looks more like traditional IR with basic blocks



Embedding C in Ravi code



Embedding C in Ravi code



Embedding C in Ravi code

• Since we generate C code as intermediary – why not allow user to 
embed C

• How to do it safely?

• Integrate an embedded full C parser

• Enforce certain restrictions
• Function calls not allowed

• Pointers in structs not allowed



Optimizing code

• New parser and IR was designed so that we can write optimization 
passes

• However not much has been done so far

• Experimental feature – detect and replace constant upvalues with 
their values



Removing constant upvalues



Future directions

• Immediate goal is to stabilize the existing features for a production 
quality release, along with a small set of batteries (Suravi)

• I would like to add type inference but it’s a hard problem

• An alternative approach would be to detect types at runtime and 
specialize functions based on input types



Challenges

• It is a personal project in spare time, so hard to make progress quickly



Links

• https://github.com/dibyendumajumdar/ravi-compiler

• https://github.com/dibyendumajumdar/ravi

• https://github.com/dibyendumajumdar/Suravi

https://github.com/dibyendumajumdar/ravi-compiler
https://github.com/dibyendumajumdar/ravi
https://github.com/dibyendumajumdar/Suravi

