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ABSTRACT

With technological evolution, 3D virtual environments continu-
ously increase in complexity; such is the case with multiscale en-
vironments, i.e., environments that contain groups of objects with
extremely diverging levels of scale. Such scale variation makes it
difficult to interactively navigate in this kind of environment since
it demands repetitive and unintuitive adjustments in either veloc-
ity or scale, according to the objects that are close to the observer,
in order to ensure a comfortable and stable navigation. Recent ef-
forts have been developed working with heavy GPU based solutions
that are not feasible depending on the complexity of the scene. We
present a spatial partitioning heuristic for automatic adjustment of
the 3D navigation speed in a multiscale virtual environment min-
imizing the workload and transferring it to the CPU, allowing the
GPU to focus on rendering. With the scene topological informa-
tion obtained in a preprocessing phase, we are able to obtain, in
real-time, the closest object and the visible objects, which allows
us to propose two different heuristics for automatic navigation ve-
locity. Finally, in order to verify the usability gain in the proposed
approaches, user tests were conducted to evaluate the accuracy and
efficiency of the navigation, and users’ subjective satisfaction. Re-
sults were particularly significant for demonstrating accuracy gain
in navigation while using the proposed approaches for both laymen
and advanced users.

Keywords: VR, Multiscale, Navigation Techniques, Automatic
Speed Adjustment

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality;

1 INTRODUCTION

Freely navigating in a 3D virtual environment can prove to be prob-
lematic, even for the most experienced users [4], and possibly deal-
breaking for laymen, especially when dealing with massive multi-
scale scenes. An example of this kind of scene, which we used in
this work, is a real oil field, which varies in a scale of 1:107 from
the smallest object (an oil tube with a 15cm radius) to the largest (a
terrain with 380Km of extension). Some systems can tackle such
scenarios more easily given their nature (e.g., examine focused ap-
plications, an exocentric interaction technique where the user can
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orbit and zoom in/out around a point of interest); however others
that demand more navigation freedom (e.g., fly, an egocentric inter-
action technique) are more susceptible to user errors.

The problem of egocentric multiscale navigation has been tack-
led previously from mainly two distinct approaches: level of scale
(LoS) based solutions, and automatic speed adjustment solutions.
In LoS based solutions, the virtual environment surrounding the
camera — or avatar — grows/shrinks according to user input [19]
(i.e., a navigation with seven degrees of freedom (7DOF)); alterna-
tively, the user can transit in and out from predefined discrete layers
of scale [9]. The solution presented in this paper follows the second
approach, using the closest geometry position as input to heuristics
that determine the optimal navigation speed at any given moment.

Examples of this last approach used an image-based environment
representation named cubemap [12] [18]. Given the camera posi-
tion, the cubemap is constructed from 6 rendering passes, each in a
different direction in order to cover the whole environment. Target-
ing a more fluid navigation experience (i.e., without discrete scene
scale layers or manual scale adjustment) with six degrees of free-
dom (6DOF), the cubemap technique is used to obtain an automatic
speed adjustment for the scenario, which has proved to be an effec-
tive multiscale interaction technique solution.

However, recently a new limitation has arisen: the render bottle-
neck. As virtual environment scenes grow in detail and complexity,
despite the fast improvements in modern hardware, rendering six
screens per frame is a GPU-intensive operation and can become un-
feasible given the scenario. Following the motivation of eliminating
such extra render steps, we propose a CPU based solution where the
virtual environment’s geometries are stored in a k-d tree [1]. This
structure is used to obtain the nearest objects — visible as well as
non-visible — allowing the application of a similar but revisited
heuristic used in the cubemap solution.

The following section presents related work on multiscale nav-
igation and k-d trees. In section 3 we show that such a solution
matches the known cubemap features while successfully removing
the render bottleneck without exhausting the CPU. The main di-
vergences between both techniques will be exposed, and specific
optimizations will be detailed as well. To back our usability claim,
in section 4 we present results from a user-testing process involving
participants with 3D navigation experience as well as laymen.

2 RELATED WORK

2.1 Automatic Navigation in 3D environments

The problem of automatic navigation in 3D environments was pre-
viously tackled by Mackinlay et al. [11]. They proposed a type
of navigation which involved a user choice for a point of interest
(POI). They addressed the difficulty of dealing with different speeds
according to the POI, allowing you to move faster when you’re far
away from the object, and slower when you’re close, making it pos-
sible for the user to carefully examine the desired object in a de-
tailed manner. Although they developed a feasible solution, they
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assumed a discrete number of POI’s in a scene and also limited the
freedom of navigation considerably in their solution.

With the evolution of VR and 3D hardware, new kinds of user
interaction problems have emerged. The term multiscale environ-
ment was forged by Perlin and Fox[13] to describe scenes in which
a conventional navigation system is not sufficient to properly in-
teract with a given environment (in their case 2D multiscale docu-
ments), and the option of adding the freedom to choose the scale
with which the user would navigate was suggested.

Offering a 6DOF navigation is a considerable jump in interac-
tion freedom and complexity compared to an “examine” interac-
tion. Differently from Mackinlay’s solution [11] in which a focus
point was predetermined and therefore velocity control could be ap-
plied relative to such point, with 6DOF navigation it is not possible
to determine exactly which is the scene object on which the user is
currently focused at every given moment of the navigation. Some
techniques were developed with the goal of easing the navigation in
these environments with a more universal approach. The most no-
torious one was showed by McCrae et al. [12], who used a render
technique to fetch the nearest point to the observer at each frame,
and used this point and its distance to choose an optimal velocity
at that instant. Trindade and Raposo [18] extended the cubemap
approach adding new features, such as determining automatically a
pivot point when transitioning from free navigation to an examine
navigation.

2.2 k -d Trees in Computer Graphics

Spatial data structures have been widely used in 3D computer
graphic applications for a variety of purposes, and the k-d tree is
one of the most popular choices in such a category. Among its ad-
vantages, the efficient point searching and closest neighbor calcu-
lation are very convenient for the usual geometric problems present
in computer graphics.

Schaufler and Sturzlinger [15] presented an optimization tech-
nique for rendering complex virtual environment scenes, creating
a cache of a scene’s geometry stored in a k-d tree. More recently
Foley and Sugerman used the k-d tree to accelerate raytracing com-
puted in the GPU when dealing with scenes with many objects in
different scales[5], over the — until then — traditional grid accel-
eration structures. This solution was later improved by Horn[8].
However, previous solutions only worked with static scenes. A dy-
namic scene raytracing solution using a k-d tree in the GPU was
later developed by Zhou et al. [20].

Other examples of the k-d tree usage in computer graphics are:
real-time occlusion culling strategy for models that present large
occluders, which replaced the traditional z-buffer approach with a
k-d tree in which the scene’s polygons were stored[3]; and a real-
time 3D pose estimation, exploring the spatial structure to obtain an
efficient closest point computation used in comparison with prede-
fined models[17].

3 AUTOMATIC SPEED ADJUSTMENT HEURISTIC

Our approach aims to be simpler and more efficient than the cube-
map strategy. It is simpler because our objective is to obtain a good
speed for each scene region, not necessarily the best, given that it
is not necessary to treat the scene down to its lowest level of detail,
and it is more efficient by making it possible to use heuristics to
reduce CPU/GPU workload needed for an acceptable solution. In
a complex multiscale scenario, such simplification is very impor-
tant. Inspired by the work of McCrae’s et al[12], we present a CPU
based solution, in which most of the work is done in the preprocess-
ing phase, leaving a minimal and efficient query to be performed in
each frame, eliminating the need of extra render passes. This could
easily allow an automatic speed strategy for scenes in which the
rendering is the main bottleneck without exhausting the CPU.

The point of the work of McCrae’s et al.[12] is to use its cube-
map to fetch the nearest point to the observer in the scene. How-
ever, the nearest neighbor search is a well known problem that can
be solved with the use of spatial structures, for example. In the fol-
lowing sub-sections, it is explained in detail how we developed a
CPU based solution to an automatic speed navigation using the in-
formation from the result of a nearest neighbor search. It is shown
how the scene is simplified to serve as input to a spatial structure,
to reduce cost and to provide a good approximation of the optimal
result. We present a math heuristic to determine the speed at each
frame that allows the user to comfortably navigate in any position of
the scenario. In addition, a technique to use the information stored
in the spatial structure to fetch nearest visible point, which was used
to improve our speed heuristic and implement features proposed by
Trindade and Raposo[18].

We point out, however, that our CPU based solution currently
does not deal with dynamic scenes, unlike the cited GPU solutions.
Given that the nature of our working scene is static, the challenge
of updating the k-d tree in real time was reserved for future work.

3.1 The k -d Tree
The k-d tree [1] is a classic spatial structure that provides an effi-
cient search of the nearest neighbor via a geometric approach. It
is a space-partitioning data structure for organizing points in a k-
dimensional space represented by a binary tree in which every node
is a k-dimensional point. Every non-leaf node can be thought of as
implicitly generating a splitting hyperplane that divides the space
into two parts, known as half-spaces. An example of a two dimen-
sional k-d tree is shown in Figure 1.

Figure 1: Example of a 2D k-d tree. The left image displays the
points separated by the generated hyperplanes, and the right image
presents the same structure in a binary tree view

The structure organization permits us to avoid big regions of the
space by performing simple math conditions, such as distance to
an orthogonal plane, speeding up operations while executing a ge-
ometric traversal. Algorithms like point search, nearest neighbor
search and region search can be executed efficiently using a k-d
tree. A balanced k-d tree performs the nearest neighbor search in
O(log n).

3.2 Pre-Processing
The pre-processing phase of our approach aims to reduce the num-
ber of vertices to be considered when performing the query needed
to calculate the instantaneous velocity. For that, our large scene is
split into regular cubes of a given edge size named cells. These
cells represent the basic unit of the velocity calculation and a cell
is considered filled if any vertex of any relevant object is located
inside it, regardless of quantity. Knowing that, the whole scene
is pre-processed to cluster all vertices into cells. The goal of this
preprocessing phase is to reduce the space requirement and CPU
realtime workload while using the k-d tree. One could decide to
skip this phase and use all vertices without pre-processing, result-
ing in a more precise calculation, if the memory and processing
resources are available. However, this preprocessing phase makes
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the technique scalable and more efficient, since using raw vertices
would not be applicable to all multiscale scenarios given their fre-
quent huge sizes. Also, this provides flexibility for the navigation
precision, being possible to set a larger cell size for a less precise
velocity calculation and more efficient processing, and vice-versa.

The result of this phase is a sparse point cloud, orders of mag-
nitude smaller than the original scene. The choice of the cell size
has an important influence on how much the scene can be simpli-
fied and, as it will be seen later, how precise the navigation can be.
Figure 2 shows an example of this simplification.

Figure 2: A complex object processed into cells

In the example shown in Figure 2, using a cell with size 4 meters,
the sample object, originally with more than 700,000 vertices, was
simplified to only 1,400 cells. These cells are then stored in a k-d
tree and this structure will be consulted in the real-time phase to
properly calculate the navigation velocity.

3.3 The Real-Time Phase
At each frame, while a user is navigating, a nearest neighbor search
is performed, having as parameter the cell where the user camera
is located. The nearest neighbor search was first shown by Bentley
[1] and improved by Friedman et al. [6], and is proved to cost O(
log n ) on the number of points present on the structure. Along with
the simplification described in the last subsection, it is expected
that such a search costs a small amount of time, even in real-time
calculation. Having this nearest cell information in hand, along
with the distance that can be easily calculated, we use a heuristic to
calculate the speed the user can move at that instant.

The basic heuristic for an instant velocity is:

V = distance∗ cellSize (1)

where distance means the number of cells of the k-d tree calcu-
lated from the nearest cell to the camera cell. The cellSize repre-
sents the length of a cell’s edge in meters. So the instant velocity is
(approximately) the distance to the observer per second.

However, this heuristic presented in equation 1 can cause abrupt
changes in the current navigation velocity. For example, the larger

the distance the more the current velocity increases, and hence the
distance increments, and so forth. In order to reduce the probabil-
ity of the user becoming disoriented, ideally the velocity variation
should be smoothed. This can be achieved by limiting the acceler-
ation/deceleration variations on the instant velocity in consecutive
frames in a frame-rate independent fashion. We apply a smoothing
function to the last velocity set, to calculate the current one. Our
increment is limited by:

∆V =V A
t−1∆t (2)

where A is a constant potential increment factor. In other words,
the current velocity can accelerate/decelerate at most V A

t−1−Vt−1
per second. The final result of the velocity V in a instant t is:

Vt =Vt−1 +(sgn(Vt −Vt−1)∗∆V ) (3)

The user instantaneous velocity is bounded between two values:
Vmin and Vmax. Vmin is chosen to be the cell size, while Vmax is set
according to the scale of the total dimension of the scene. These
bounds are important in order to avoid both the user stopping or
getting a speed so high that it gets uncontrollable.

The influence of cell size can be perceived here. Since the mini-
mum velocity is dependent on the cell size, it determines how pre-
cisely you can examine an object when you are close to it, or in
other words, within the same cell. A good choice for a cell size
depends on the smallest object in the scene that you would want to
examine closely and carefully.

3.4 The Nearest Visible Search
One feature of Trindade and Raposo’s[18] approach which remains
to be solved in our strategy is the consideration of the “nearest vis-
ible point” for the automatic pivot point for exocentric navigation.
Basically, it allows a smooth transition through an egocentric navi-
gation to an exocentric navigation (examining an object) by setting
a visible subject as a point of interest. In that work, this informa-
tion was obtained by a render strategy, more specifically, instead of
obtaining the closest point in all 6 frames of the cubemap, only the
closest point in the front frame was considered.

In our proposed implementation, we want to benefit from k-d
tree’s properties to make an efficient CPU based approach to obtain
the same information. The k-d tree nodes entirely outside the view
frustum could be discarded on the traversal for the search of the
nearest neighbor, avoiding many unnecessary searches.

We present a strategy to perform a search that gives, as a result,
the nearest neighbor within a view frustum. For simplification’s
sake, we present an algorithm considering the region only as the
viewing frustum, but it can be extrapolated for any region. For
didactic reasons, we present the algorithm as recursive, but an iter-
ative implementation is preferred to improve performance.

Consider, for each k-d tree node n, dimn the dimension of the
node that was split during its generation, and keyn the vertex used
as key for that node. In our k-d tree, we consider that left nodes
store keys that are smaller than the current node along its dimen-
sion. Consider also two arithmetic functions: distance that takes
two points (or keys) as parameters and returns their euclidian dis-
tance; and distToPlane that returns the distance between a point p
and an orthogonal plane, defined as follows:

distToPlane(n, p) = |p[dimn]− keyn[dimn]| (4)

The algorithm is frustum aware and the model-view-projection
matrix is used as an input. Previously, an axis aligned bounding
box of the frustum geometry in world coordinates has been calcu-
lated, shown below as f rustummin and f rustummax. The isVisible
function, considering the input frustum, is assumed implemented,
by projecting a point into clipping space, and checking if it belongs
within the borders of the canonical cube.
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Algorithm 1 Nearest Visible Algorithm
n← root
nearest← ∞

function nearestVisible( n,nearest, p )
if keyn[dim]< f rustummin[dimn] and n.right 6= null then

return nearestVisible( n.right,nearest, p )
end if
if keyn[dimn]> f rustummax[dimn] and n.le f t 6= null then

return nearestVisible( n.le f t,nearest, p )
end if
resultNode← null
if isVisible(keyn) and distance(p,keyn) < nearest then

nearest← distance( p,keyn )
resultNode← n

end if
if n.le f t 6= null and distToPlane(n.le f t, p) < nearest then

tempNode← nearestVisible( n.le f t,nearest, p )
if tempNode 6= null then

resultNode← tempNode
end if

end if
if n.right 6= null and distToPlane(n.right, p) < nearest then

tempNode← nearestVisible( n.right,nearest, p )
if tempNode 6= null then

resultNode← tempNode
end if

end if
return resultNode

end function

In a regular multiscale scenario, the view frustum tends to be
much smaller than the whole scene. Therefore, many branches of
the k-d tree are readily ignored and, besides the additional plane-
against-frustum tests, the search tends to be faster than the global
nearest neighbor calculation on average. The result of this search
can be used as a pivot point on exocentric navigation, similarly to
Trindade and Raposo’s solution[18].

3.5 Improving the Heuristic
A common issue with defining the current navigation velocity based
on the nearest world point occurs when leaving a near object while
facing a different distant object towards which the user wishes to
navigate. Although the target object is relatively far, the previous
object that is still near the camera — despite not being visible —
limits the acceleration, resulting in a frustrating feeling of being
pulled back.

Our proposed solution to this problem involves taking advantage
of the result of the nearest visible search to extend the heuristic
presented in section 3.3. Let pcamera, pglobal and pvisible be the
camera position, the position of the nearest neighbor to the camera,
and the nearest visible neighbor to the camera, respectively. Thus,
we define two vectors (normalized):

~vglobal = pglobal − pcamera

~vvisible = pvisible− pcamera
(5)

So we replace the calculus of V on the equation 1 for:

V = (distance∗ cellSize)∗ (1+
1+~vglobal ·−~vvisible

2
) (6)

The sequence of the heuristic logic follows equally. The desir-
able result is to give priority to visible points when deciding the

base velocity. When the nearest visible and nearest global are in
completely opposite directions in relation to the viewer, the result
velocity is doubled. If pglobal = pvisible then it behaves exactly as
in the basic heuristic.

An undesired limitation of this improvement occurs when visible
objects located near the border of the screen maintain the frustrating
feeling of not accelerating accordingly towards the distant object on
which the camera is centered. Assuming that the user will always
center the camera in the direction on which he/she wishes to navi-
gate, we improved once more the heuristic to only consider objects
located relatively in the center of the camera view.

This proposed improvement is achieved by deliberately narrow-
ing the viewing frustum by reducing the perspective fovy. This
would consider only objects that are shown in the center of the vis-
ible area, as shown in Figure 3.

Figure 3: Example of how the fovy of the viewing frustum was
reduced while searching for the nearest visible point. The black
frustum represents the area being rendered, while the blue one rep-
resents the search area.

3.6 Performance
Our test scenario has a total of 8.9 million vertices, 5.9 million
primitives and 1250 unique objects. The specifications of the ma-
chine which ran the tests are: Core i7-920 (2.67 GHz) processor, 6
GB RAM memory, GeForce GTX 460 graphics card.

The performance test was executed by running a predefined cam-
era path, trying to cover scene areas with different CPU and GPU
demands. The same path was run using three situations: not using
any automatic adjustment, using the basic heuristic for automatic
speed adjustment (section 3.3), and using the nearest visible heuris-
tic for automatic speed adjustment (section 3.5), named A, B and C,
respectively. Table 1 shows general performance results, and Figure
4 shows the measurements per seconds in a graph.

Figure 4: Graph of FPS measurement per time

As we can notice by Table 1, the impact is roughly a fixed rate
(11%) for the B scenario on average, considering the scenario A as
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FPS count A B C
Average 64.38 57.10 50.97

Minimum 31 28 27
Maximum 118 115 87

Table 1: General results of performance for each strategy

baseline. A similar cost rate is perceived between B strategy and
C strategy (11%). The graph confirms the proximity, except in rare
cases. It is also worth highlighting that the worst frame-rates in the
B and C scenarios were nearly identical.

4 USER TESTS

To evaluate the usability of the proposed techniques, a batch of user
tests were conducted. The techniques present the goal of assisting
the users in the task of exploring a multiscale virtual environment
with a more fluid, comfortable and intuitive experience. Therefore,
we chose to perform tests comparing navigation experiences with
and without such improvements. Among the aspects of navigation
to be analyzed, we were mainly interested in the precision, duration
and overall user satisfaction.

4.1 Test Environment
The tests were performed using the Siviep viewer, a project un-
der development by TecGraf in cooperation with Petrobras. Siviep
supports a comprehensive visualization of several types of models
comprising an oil exploration and production enterprise. For exam-
ple, it is possible to examine the oil extraction process starting at
the reservoirs, passing through the wells, the water and gas pumps,
up to the ducts that arrive at the oil platform, also included, not to
mention seismic and terrain data as well. All of this is in a single
3D scene (see Figure 5).

Figure 5: Example screenshot of Siviep

Such a scenario is relevant for the test because of the multiscale
nature of the different types of models that can be inspected simul-
taneously in a single interactive scene.

4.2 User Profiles
The tests were conducted with a group of 24 subjects. Twelve of
them already had previous experiences with 3D navigation (e.g.,
3D modeling applications, video games, other 3D viewers), and
the remaining twelve had little or no experience. We will refer to
these subgroups as the experienced group and the laymen group
respectively.

The ages of the subjects varied from 22 to 55, all of them were
familiar with the input devices used in the experiment (keyboard
and mouse), and none of them had any previous contact with the
application used in the tests.

4.3 Test Design
The proposed test consists of the user navigating through a prede-
fined path guided by a sequence of rings (Figure 6). Only one ring is
visible at each time, and the user is instructed to attempt to navigate
through such ring. Once surpassing the ring — be it successfully
through its bounds or unsuccessfully outside — it will immediately
disappear and the next ring will appear, and so on until the end of
the test. In the case of the next ring in the course escaping the cur-
rent view of the camera, an arrow indicating the direction of such
ring is displayed on the screen to help the user.

The ring sequence forms a course covering most of the selected
scene’s elements, which is a convenient path for evaluating the au-
tomatic speed adjustment. While the two closest rings — both lo-
cated inside an oil platform — present a distance of approximately
15m between them, the most distant pair of rings — located be-
tween the offshore enterprises and the continent’s coast — have
more than 80km separating them. The course can also be viewed
as three separate sub-courses connected between themselves: in-
side platform navigation; between platform navigation; and off-
shore navigation, each with a particular scale, presenting average
distances between rings at 50m, 1500m, and 40km respectively.
And yet, the course was engineered to allow a navigation experi-
ence with similar time intervals necessary to advance through any
pair of rings.

Figure 6: Ring in test

The navigation itself is performed from a first person perspective
with 6DOF and using mouse and keyboard as input devices. The
mouse serves as an interface to determine the direction in which the
user is looking. During manual navigation, the mouse scroll wheel
is used to determine the navigation velocity. The keyboard serves as
an interface to determine the translation movement of the camera,
always relative to the direction in which the camera is facing.

Each user was asked to perform three interactions on the same
pathway by varying the velocity adjustment policy of each interac-
tion: interaction A works with a fully manual speed adjustment sys-
tem; B with a nearest-point automatic speed adjustment heuristic;
and C with a hybrid nearest-point and nearest-visible-point speed
adjustment heuristic, as seen in section 3.5. In interaction A the
user was also offered feedback of the current velocity on the GUI
to assist the navigation, while the B and C interactions offered no
such feedback with the goal of making the speed adjustment as nat-
ural as possible. As far as the subjects were concerned, there were
no apparent distinctions presented between interactions B and C.

This multiple-condition within-subjects test approach used the
counterbalancing technique with a Latin Square order[10] to com-
pensate the learning between interactions. An advantage of the
within-subjects design is that there is less variance due to partic-
ipant disposition, given that a participant who is predisposed to
be meticulous (or reckless) will be likely to exhibit such behavior
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consistently across all interactions, and therefore the variability in
measurements is more likely to be attributed to differences between
interactions than differences between participants.

Each user was introduced to the system and the procedure iden-
tically, followed by the explanation of the current interaction based
on the order of the given test, where only the information relevant
for each type of interaction was informed incrementally. We pur-
posely chose not to conduct any training previous to testing, since
our typical use-case involves laymen performing a quick navigation
without being introduced to the system. After each interaction the
user was given a System Usability Scale (SUS)[2] form to fill out,
producing, at the end of the test, three SUS results per user. Follow-
ing the second interaction using automatic-speed adjustment (be it
B or C, depending on the order), users were also asked if they no-
ticed any difference between both automatic experiences.

4.4 Test Results
In order to analyze the test results objectively, it is important that we
interpret the data of both user groups — laymen and experienced
users — separately, since our solution may affect each category
differently. Users in the laymen category have difficulties dealing
with the most trivial of multiscale navigations, and therefore our
solution aims to allow an interaction that originally would simply
not be possible, breaking the multiscale interaction barrier for non-
experienced users. On the other hand, experienced users are already
familiarized (and in some cases even comfortable) with manually
adjusting navigation speed, and so our goal is focused on improving
an already existing navigation experience, making it as fluid and
intuitive as possible.

The normality prerequisite to perform a parametric significance
test on our data was not met according the Shapiro Wilk test[16].
Therefore, the significance of the obtained data was tested using the
Friedman test[7]. We assign this to the fact that, despite the groups
being divided by their prior familiarity with 3D environments, other
variables were not assessed, e.g., the person’s ability or speed using
mouse and keyboard. There were cases in which laymen performed
similarly to some experts. In other cases, laymen were much less
familiar with computer interaction than others in the same group
and had difficulties with simple 3D concepts, becoming clear out-
liers of the dataset.

Precision Analysis

The applied test consisted of a total of 30 rings through which the
subjects should attempt to cross within their bounds as an evalu-
ation of precision and control of the navigation system. Results
showed an improvement in this criteria for both laymen and experi-
enced users, as seen in Figure 7 when using automatic speed adjust-
ment over the manual alternative. Curiously, while the experienced
group managed to practically ace the test with both automatic solu-
tions presenting a performance increase of nearly 16%, the laymen
group felt more comfortable with the less volatile navigation tech-
nique B without the nearest visible object heuristic increment. This
behavior can be understood by the difficulty that the unexperienced
users had in dealing with the more abrupt changes in scale, and con-
sequently in velocity. What one laymen would classify as an exag-
gerated jump in the acceleration in a short period of time, a more
experienced user would consider as an essential volatility to avoid
a frustrating experience of tediously waiting for his/her navigation
velocity to change the desired value.

According to the Friedman test, there was a significant statisti-
cal difference in precision measured with both groups (p=0.023 for
laymen, p=0.001 for experts). Pairwise comparison between strate-
gies showed that the most significant differences were between the
manual speed strategy A and automatic speed adjustment strate-
gies (Laymen AB: p=0.011, Experienced AB: p=0.001, and Expe-
rienced AC: p=0.004), showing that the automatic strategies im-
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Figure 8: Average time to complete course in seconds

proved the navigation precision. We did not find a significant dif-
ference between automatic strategies B and C in both groups. It
should be highlighted that on both B and C interaction techniques
the laymen group managed to match or beat the experienced group
accuracy level of manual navigation, i.e., with the aid of automatic
speed adjustment a laymen user was able to perform similarly to an
experienced navigator.

Regarding the completion time, no statistical relevance was ob-
served with the laymen group using the Friedman test (p=0.205).
Besides that, the laymen managed to achieve more precise results
while taking considerably less time to complete the course on aver-
age — approximately 34% less comparing navigation technique C
to A — as seen by observing Figure 8, which shows a tendency of
improvement.

On the other hand, the Friedman test confirmed significant differ-
ence in the time measurements of the experienced group (p=0.009),
despite the close average numbers. Pairwise comparison between
strategies showed that the most significant difference was between
the two automatic speed strategies B and C (p=0.02), showing that
experienced users consistently improved their completion time us-
ing the visibility heuristic, without compromising their precision.

To better illustrate the learning curve of laymen when navigating
in a 3D multiscale environment for the first time, Figure 9 shows
the average course completion times separated by whether or not
the manual navigation was the first test performed by the user. It
is visible through the chart, as it was noticeable while applying the
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users tests, that the average user would struggle with the most sim-
ple transitions between the scene rings, implicitly frustrating the
user and not allowing him/her to focus on the interaction as a whole
as well as to get a better idea of what was expected from the test.
On the other hand, when navigating manually after having experi-
enced a more stable experience aided by the automatic speed adjust-
ment mechanism, the average user would still notice the limitations
of manual velocity adjustment, but his/her familiarity with the test
course as a whole flattened the manual adjustment learning curve.
This behavior does not repeat itself when involving automatic nav-
igation, as also seen in Figure 9. Automatic navigation completion
times are hardly biased depending on whether the first navigation
test was manual or not. We believe that even if the manual speed
adjustment were to be preferred over the automatic solution by an
experienced user, the automatic approach is more user friendly and
more inclined to accelerate the learning process.

Laymen/Manual

Experienced/Manual

Laymen/Automatic

Experienced/Automatic

100

200

300

400

500

600

Starting with A Starting with B or C

Figure 9: Average time to complete course, in seconds, depending
on whether his/her first navigation test was manual or automatic

Input Analysis
By relieving the user of the responsibility of defining the navigation
speed, the automatic speed adjustment technique demands consid-
erably less user input without limiting movement freedom in any
way. The results shown in Figure 10 reveal that tendency. The
Friedman test showed no significant difference with the laymen
group (p=0.174), but a statistical significance among the experi-
enced group (p=0.005). Once again we notice that laymen are more
comfortable with a less volatile velocity adjustment policy present
in the B navigation scenario, while the experienced users presented
approximately 50% improvement in both automatic approaches.

This drop in the demand for user input can be very useful de-
pending on the device interface at hand. During testing, we worked
with the mouse and keyboard devices, where both hands are used
simultaneously offering a more flexible manipulation of the system.
However, in immersive environments such as caves, users usually
have to work with a wand-like controller manipulated by a single
hand, therefore overloading the quantity of inputs on a single de-
vice. Not having the worry about one of the interactions variables
(speed) simplifies such a scenario.

A behavior observed during testing on manual velocity adjust-
ment interactions was subjects showing difficulties in translating
and adjusting their speed simultaneously. Some users, the majority

of them laymen, would translate, stop, adjust their speed, and re-
turn to translating, resulting in a jerky experience. This issue is also
solved by calculating the near-optimal velocity during navigation.

Laymen Experienced
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Figure 10: Average input count per interaction. A discrete input
is defined as any time the user presses and releases a key from the
keyboard, or when he/she starts and finishes a mouse wheel move-
ment.

User Feedback
In order to evaluate the user experience of performing the naviga-
tion tests, we presented the subjects an SUS questionnaire after each
interaction, resulting in the approval rates displayed in Figure 11.
Both laymen and experienced groups showed improvements when
interacting with the automatic velocity adjustment system, while
laymen, once again, preferred the less volatile navigation technique
B, and experienced users had near equal satisfaction with both B and
C techniques. However, no significant difference was found accord-
ing to the Friedman test (Laymen p=0.094, Experienced p=0.166).
This disparity between SUS scores and the objective results from
the study can be explained in part because SUS may not be the best
questionnaire for a task-level evaluation [14]. Another reason for
this is that, in general, the users did not understand very well the
differences between the automatic approaches.

Laymen Experienced
40
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80.41
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77.91

87.91

Manual Automatic Automatic + Heuristic

Figure 11: Average user SUS Scores
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Despite experienced users presenting similar SUS ratings for
both automatic techniques, and laymen even giving technique B
a slight advantage over C, when asked if any difference was no-
ticed between both types of automatic speed adjustment interac-
tions, those who managed to notice the influence of the nearest visi-
ble point heuristic favored it over the only nearest-point alternative,
as seen in Figure 12. While most users would offer less precise
feedback such as “C was faster” or “I felt more control with B”, be
it in favor or against the nearest visible point heuristic, three users
were able to point out the exact improvements proposed, such as
“The interaction allowed me to leave objects faster, and decelerate
faster as well when quickly approaching a smaller scale object”.

0 5 10 15
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Preferred B

No Difference

5

1

6

2

2

8

#Number of users

Laymen Experienced

Figure 12: User feedback comparing interactions B and C

5 CONCLUSIONS

Multiscale navigation has proven to be a challenge to both experi-
enced users and laymen, specifically regarding the task of defining
the most suitable navigation speed for each moment during an in-
teraction. Though it is still not a definite solution, since test sub-
jects eventually still complained about the lack of fine tuning over
the current velocity, there are indicators that removing this respon-
sibility from the user improved the experience regarding control
and overall satisfaction, and reduced the learning curve of the sys-
tem. Laymen who previously were incapable of performing the
most trivial interactions managed to complete our test course with
the same precision as experienced users navigating with manual ve-
locity adjustment. Experienced users averaged near perfect scores
with half the inputs necessary for the manual technique while offer-
ing conclusive positive feedback on the SUS questionnaire.

The results achieved were similar to previous works [12] [18]
but with more extensive testing. We also managed to evolve
performance-wise, relocating the workload from the GPU to the
CPU and consequently removing the need of rendering the same
scene six times per frame, while at the same time reducing the over-
all processing demands of real-time interaction by working with a
preprocessed spatial structure. This was achieved while maintain-
ing most features available in previous similar solutions, with the
exception of dealing with dynamic scenes (since the cost of updat-
ing the k-d tree in real-time is usually prohibitive). On the other
hand, we were able to suggest alternatives to the existing automatic
speed adjustment strategies.

The proposed nearest-visible-point heuristic is a step towards im-
proving the automatic-speed adjustment technique in a more uni-
versal solution. Although every alteration in the heuristic offers a
trade-off, and due to the diversity present in multiscale scenarios,
it is challenging to determine exactly what is the intention of the
user. It is possible that eventually more advanced users could manu-
ally determine the heuristic improvements and adjustment variables
more suitable for them.

The static scene solution — working with a k-d tree — is ap-
propriate for our specific application and was important to indicate
the validity of the proposed navigation improvement. However we
intend to investigate strategies that allow updating spatial structures
(e.g. a bounding volume hierarchy) in real-time for dynamic scenes.
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