
Virtual Reality techniques for planning the Offshore

Robotizing

Felipe Carvalho, Alberto Raposo

TecGraf Institute

PUC-Rio

Rio de Janeiro, Brazil

{kamel,abraposo}@tecgraf.puc-rio.br

Ismael Santos, Mauricio Galassi

CENPES

Petrobras

Rio de Janeiro, Brazil

{ismaelh, mauricio.galassi}@petrobras.com.br

Abstract— Remote locations such as ultra-deep water

reservoirs (400 m or deeper) have been increasing the production

complexity and logistic costs for Oil & Gas industry. In such

conditions, oil exploration feasibility depends on new

technologies to optimize production efficiency. One possible

solution to this challenge is to increase the degree of automation

in production units. New design concepts consider the use of

robotic devices in such scenarios. In this paper we present the use

of virtual reality techniques in a robotics framework, SimUEP-

Robotics (Robotics Simulator for Stationary Production Units),

aimed to enable planning the offshore platform robotizing.

SimUEP-Robotics has an integrated Virtual Reality Engine

specially tailored to provide realistic visualization of large

offshore scene models in an immersive environment. Through the

use of those visualization tools it is possible, for example, to better

understand the quality of the planned robot trajectory and

propose new algorithms that can be further evaluated in the

virtual environment. We argue that the validation process in an

immersive virtual environment reduces risks and costs of real

operation tests scenarios.

Keywords—virtual reality; robot simulation;offshore platforms.

I. INTRODUCTION

The vast majority of new Oil & Gas fields present high
production complexity and logistic costs, in addition to several
other challenges. In Brazil, exploration in the pre-salt layer
represents a mark in the oil industry, breaking production
records in deep and ultra deep waters. The pre-salt platforms
operate far away from the coasts at distances that can exceed
300 km, increasing significantly transportation costs, logistics
infrastructure and response time, especially in emergency
situations. Under such conditions, oil exploration feasibility
depends on new technologies to optimize production
efficiency.

Robotics and automation can greatly improve the
operational quality and productivity of offshore Oil & Gas
installations (From 2010). Robots can work non-stop without
the need for intervals and pauses, are less prone to errors, and
also more reliable than human workers. This can increase the
operation of the platform by reducing down-time and
production stops, which are main concerns for the platform
operators. Introducing robotic and autonomous solutions will
also decrease costs related to commissioning and logistics,

particularly by avoiding flying human operators to distant
fields. (S. O. Johnsen 2007).

The next generation of offshore platforms will present high
degree of automation. New design concepts consider the use of
robotic systems to accomplish autonomous or teleoperated
tasks on production plants, even though there are several
technological challenges that should be overcome to have
feasible robotics technology available offshore. In this paper,
we propose an offshore robotics framework as a first step to
enable the planning of offshore platform robotizing, using
auxiliary virtual reality tools and techniques aiming to improve
the understanding of the planned task throughout its execution
in an immersive environment.

The SimUEP-Robotics is formulated concerning the
offshore requirements. It is a flexible framework that allows
rapid prototyping development of new applications through the
addition of customized robots and devices in the target scenario
by the use of an interactive editor. The proposed framework
also simplifies the development and validation of the control
algorithms by integrating virtual and real robots, sensors and
different scenarios.

Virtual Reality (VR) technologies can improve the
understanding of any engineering project. In the present work
those techniques are used for visualizing the offshore platform
robotizing activities. Immersive visualization environments for
robotics simulation have the potential to reduce the complexity
and difficulty in visualizing and validating simulations of
operations performed by robots on a real Stationary Production
Unity (SPU). The visualization tools manage data and present
visual information that enables professionals to observe and
acquire a better understanding of problems, such as robot
motion planning. Without visualization, it is hard to understand
the quality of the solution found for the movement of the robot
based only on simulation results. Validation reduces risks and
costs of testing operations in real scenarios.

II. RELATED WORKS

Different robotic frameworks and simulation platforms have
been developed both for research purposes and industrial
applications. However some important functionality present in
our proposed framework is absent in the existing ones. Before
starting the development of SimUEP-Robotics we made a

978-1-4799-4905-2/14/$31.00 ©2014 IEEE 353

thoroughly comparison among the most advanced tools
available in the market at that time (2011), such as Webots
(Cyberbotics 1996), Microsoft Robotics Developer Studio
(Microsoft Corp. 2010), V-REP (Coppelia Robotics 2010) and
ROS (Quigley 2009); and other industrial application tools
such as RobotStudio (ABB 2001) and ROS industrial (ROS-
Industrial™ Consortium 2012).

Webots is a fast prototyping and simulation software for
mobile robotics. Complex robotic scenarios can be designed,
with different robots that can be equipped with simulated
sensors and actuators. The advantages are that the robot
controller can be programmed with other development
environments and that it is available on any operation system
(OS). The main disadvantage is that it requires a paid license to
have full capabilities and an annual renewal license for
software update. The ability to build a customized scenario is a
feature also presented in SimUEP-Robotics. In our solution, the
robot controller can also be programmed by external Robotics
Simulators as long as they are compatible with ROS (Figure 1).

Robotics Developer Studio (RDS) is a Windows-based
environment for robot control and simulation developed by
Microsoft. RDS is based on Concurrency and Coordination
Runtime (CCR) and Decentralized Software Services (DSS)
concepts. The first one is a .NET-based concurrent library
implementation that manages asynchronous parallel tasks. The
second is a lightweight state-oriented service model which
allows multiple services to run on a single node achieving
complex behaviors. The current version, RDS 4, is free.
However, it only works with Windows. In our solution we also
use ROS and its ecosystem’s components.

V-REP is a virtual robot experimentation platform that has
an integrated development environment and is based on a
distributed control architecture. In this way, objects can be
controlled via an embedded script, a plugin, a ROS node, a
remote API client or a custom solution. V-REP is open-source,
but requires payment to have all functionalities. We also
perceived the V-REP integration with ROS as a promised
solution that we decided to pursuit.

RobotStudio is a simulation and offline programming
software that was developed by ABB Robotics. RobotStudio is
built on top of the ABB VirtualController, which is an exact
copy of the software that runs on the robots from ABB. In this
way tasks like training can be performed without disturbing
production. The program requires a paid license to have all
functionalities and is restricted to ABB models.

The Robot Operating System (ROS) is a multiplatform
meta OS which establishes a communication layer and some
services and applications provided through a package
framework. It is a software framework for robot software
development, providing operating system-like functionality on
a heterogeneous computer cluster. Willow Garage maintains
the core system with an open-source free software license. An
extensive worldwide community efficiently expands it. As an
OS it provides hardware abstraction, low-level device control,
user transparent inter process connection and communication
based on the message passing paradigm. The process nodes are
identified by its corresponding IP address, so network nodes
integration is automatically implemented. It also provides tools

and libraries for obtaining, building, writing, and running code
across multiple computers. ROS is similar in some respects to a
“robot framework”.

For robotics simulation, ROS ecosystem integrates the
Gazebo project, which is a three dimensional multi robot
simulator providing sensor data and physical interaction
between objects. The Gazebo integration with ROS inspired
very much our solution indeed. In fact, we decided to create
SimUEP-Robotics due to the lack of powerful VR tools and
techniques in the ROS ecosystem.

When considering industrial applications, ROS-Industrial is
a BSD-licensed software library which extends the capabilities
of the ROS software to industrial applications. It is a recent
initiative from Southwest Research Institute (SwRI), being
supported by the ROS-IndustrialTM Consortium (RIC).

III. SIMUEP-ROBOTICS ARCHITECTURE

In robotics applications, the classic programming approach of
writing a specific code to each project is being modified. The
new programming paradigm is the use of multiple reusable
subtask programs to accomplish current and future tasks. This
not only decreases the rework of researchers but also reduce
the project development time. In this context, a flexible
architecture that permits rapid prototyping of different
scenarios and applications is a valuable tool for the industry.
Additionally, integrating virtual and real robots, environments,
sensors and objects improves the development capacities.

As mentioned earlier ROS framework establishes a
communication layer between different process and devices,
providing broadcast topics with periodic messages and on
demand services. Furthermore, ROS focuses on the message
content, letting the sender and receiver transparent to each
other. In virtual and real environment integration scenarios, this
transparency permits to change between resources without
code reimplementation. To increase the portability of
applications, standard messages to common required resources,
such as laser range finders and robot’s joint state, are available.

Fig. 1. Diagram representing the SimUEP’s component based architecture.

Figure 1 shows the SIMUEP-Robotics architecture, which
is component-based having, among other components, the VR-

354

Engine, which is responsible for the visualization of the
simulation of actual operations performed with robots in
offshore scenarios. Other components of the framework
provide resources for manipulating different 3D input devices,
3D interaction techniques, audio and video streaming,
collaboration and a communication interface bridge to the ROS
system, named ROS-Bridge.

In the following sections, we present further information
about ROS Bridge and the Robotics-Simulator Modules
currently available: Topside Offshore Simulator and
Underwater ROV Simulator.

A. Ros Bridge

The ROS Bridge is responsible for exchanging data between
ROS compatible robotics simulators and the virtual robots
created by the VR-Engine according to the target virtual
scenario where the robotic task is being executed. The main
goal of development of ROS Bridge is to make the data from
the VR-Engine available to ROS compatible simulators. Data
communication between the VR-Engine and ROS applications
are controlled by ROS Nodes, which are processing units
capable of establishing communication with each other through
topics or services:

• Topics: structures that store messages in an
asynchronous communication model (public/subscribe).
The nodes publish and receive information in topics that
are identified by names.

• Services: asynchronous communication with
client/server architecture (one provider, multiple users).

The integration of ROS in SimUEP-Robotics (Figure 2)
allows the creation of a communication layer between the
visualization of a virtual scene and the simulation of real
robot’s tasks. The exchanged messages are similar to those
used to control real robots.

Fig. 2. ROS integration in SimUEP

The SIMUEP component based approach enables the
creation of new "bridges" to other robot frameworks, like Rock
(ROCK 2012) that is in our near future development plans.

B. Robotics Simulator Modules

At present, the SimUEP-Robotics has two robotics simulator
modules implemented allowing us to instantiate two different
applications: one for topside offshore operations and another
for sub-sea engineering. For the topside, the robot simulation
strategy depends on the used virtual device and the task that
should be planned. As a proof-of-concept we have developed a
pick-and-place task in a typical offshore scenario. In the second
application, the ROV simulator module implements the
dynamic motion equations for an underwater ROV vehicle
from Liu Hsu et. al. (2000) (Figure 3). SimUEP-Robotics can
be extended with other ROS compatible robotic simulators
addressing other operation problems.

Fig. 3. Visualization of ROV Trajectory using virtual realty techniques.

The robotics-simulator modules implementation seamlessly
integrates some open-source community maintained ROS
packages according to its needs. This integration is driven by
the definition of the robots on the Unified Robot Description
File (URDF) associated to its virtual robot used in the target
scenario. The URDF is an XML file format that provides
information about robots and associated sensors (e.g., laser,
camera), trough joints and links definition at different levels
such as kinematic, dynamic and visual. Sensors can be
incorporated using the Gazebo interface, which will be
described later.

Upon reading the robot URDF files in the scene the
Robotics-Simulator configures the necessary standard
messages to interact with sensors and robots. In addition, it
uses different ROS integrated libraries and packages to perform
tasks like: navigate with mobile robots (navigation stack),
transform data through different coordinate systems (TF
package), build 3D maps (OctoMap) and process images
(OpenCV).

After selecting one of the SimUEP-Robotics available
applications (instantiated by selecting an specific Robotics-
Simulator module according to the addressed task), the VR-
Engine reads the scene description defined by the user and the
related URDF files to create the virtual environment together
with the visual representations of the robots (Figure 4, steps 1
to 3). The ROS-Bridge is responsible for creating a ROS’s root
node and exchanging information through its associated ROS
topics and services. Some of those created topics are the

355

sensor’s camera and laser information for each virtual sensor
instantiated in the virtual scenario according to its URDF
definition. After that, the VR-Engine starts the corresponding
simulation module that communicates with robots controllers
and read sensor data (Figure 4, steps 4 to 7). Besides that, it
also starts services to calculate robot's dynamics and kinematic
under request of other nodes (see Figure 4, step 8). The robot's
behavior in virtual environment (yellow side) is the same in the
real environment (red side). In fact, we have conducted some
experiments in the university’s lab confirming this assumption
using the same Robot Simulator Module.

Fig. 4. Diagram representing the Robotics Modules interaction with

SimUEP’s ROS Bridge

In the following section, we describe the SimUEP-Robotics
Virtual Environment main features and VR tools available to
Robotics-Simulator modules.

IV. VIRTUAL ENVIRONMENT

In any instantiated SimUEP-Robotics application, the
virtual environment is loaded from a scene description file.
This file contains a scene description of the target scenario. A
scenario is basically composed by an observer, environment
objects, lights and robots.

SimUEP-Robotics uses the game engine Unity3D as its
graphic engine component. Unity3D is a tool for developing
games created by Unity Technologies. This engine was chosen
due to resources and graphic quality it provides, enabling the
creation of realistic environments.

A. 3D Scene Description

The scene description is an XML file that describes the target
scenario. It has a hierarchical structure describing all items in
the environment. The first item of this file is displaySettings,
which defines the properties of virtual camera (near and far
planes) and output settings to enable visualization modes for
immersive systems, e.g., CAVEs, PowerWalls and other
projection systems. Global settings of the physics engine, such
as update frequency and gravity vector are specified in item
physicsSettings. The user visualizes the scene by specifying the
observer item, which has properties such as position,
orientation, height and speed. All the lights are defined inside
the item lights. They can be of type point, spot and directional.
Common attributes are position, orientation, color, intensity
and type of shadow. The scene objects are specified by
envObjects items. For each envObject the following attributes
are required: position, orientation, bounding box, mesh, and

some physical properties, such as mass, inertia matrix and
material information (friction, bounciness, etc).

Each robot in the scenario file is defined by a URDF, a
position and a set of actuators and sensors. Some of these
sensors are also defined in the URDF, for example, cameras
and lasers. For each sensor and actuator, it is necessary to
define a topic name to identify the associated ROS message.

B. Virtual Robotic System

We have implemented eight different ROS compatible robots,
namely, Motoman DIA10, Motoman SDA10, Grant Crane,
Seekur, a generic ROV, Baxter and ROV XLS 150. Six of
them are in the Figure 5. Any robot can be instantiated in any
application and positioned (position, attitude and scale) defined
in the 3D scene file of the target scenario.

Fig. 5. Six Robots available in SimUEP-Robotics (Puma560, Motoman

DIA10, MotoMan SDA10, Grant Crane, SeekUR and ROV).

C. Actuators

The actuators are used to modify some positional aspects of the
robots. There are two actuators available: the first one is based
on the use of joint values; and the second on the absolute
position of the whole robot.

D. Sensors

Sensors are used for a robot to perceive the environment and,
through them, being able to react to its surroundings. Each
robot may be composed of one or more types of sensors. In

356

SimUEP Robotics, four different types of sensors are available:
lasers, cameras, proximity sensors, and collision sensors.

Camera sensors are able to generate images from the virtual
environment. A robot can have multiple camera sensors that
are normally positioned along its links. This positioning allows
the visualization of different views of the same robot at the
same time. Each camera is described (within the URDF file)
following the description format SDF (from Gazebo Project)
and has attributes such as image size, lens aperture, pixel
format, among others (Figure 6). The Virtual Environment
camera sensor component is responsible for capturing data
from the camera and sending them to the Robotics-Simulator
Module through the associated ROS topic defined in the robot
URDF file. A feature that generates a visual representation of
these cameras is available.

Fig. 6. Camera sensor description in URDF file.

Robots can also use sensors like lasers. These are used to
recognize the environment through a one-dimensional scan. As
a result of this scan a vector containing values corresponding to
the distance between the laser and the obstacle of the
corresponding scenario is obtained. Figure 7 shows the visual
representation of two lasers in SimUEP, as well as images that
represent the distance vector captured by each one. The laser
sensor is also defined in the robot URDF file. Its parameters
contain information such as the initial position of the sensor,
resolution and maximum and minimum angles, topic name of
the message, as well as parameters that control their display in
virtual scene.

Collision sensors are sensors that allow the robot to identify
when an object is close to some of its physical components
(links).This allows the robot to be able to avoid obstacles, and
enable the measurement of these obstacles to a certain part of
the robot. This sensor is implemented by using bounding
boxes. When any object penetrates a bounding box, all
interception points are informed (Figure 8) using the message
sensor_msg/PointCloud2. The description of this sensor is
present in the scene description file and it has a parameter for
the precision.

Proximity sensors are similar to collision sensors; however,
they only inform the name of the link hit. Basically, when
something enters a bounding of this sensor, a message is sent to
ROS.

E. Visualization Tools

An important aspect of visualization in SimUEP Robotics is to
support the evaluation of simulation results as well as the

validation of different offshore scenarios composed of robots,
valves and other equipment defined in the scene description
file. In this scope, the following visualization data can be
mentioned: Bounding Boxes and Axis Joints (Figure 9).

Fig. 7. Laserscan visualization in SimUEP-Robotics.

Fig. 8. Collision Sensor, the red dots are the intersections points detected in

the link’s bounding box.

Fig. 9. Axis features of SimUEP Robotics visualizer.

The SimUEP-Robotics has two extra features, Ghostview
and 3D Point Trajectory, which allow the visualization of the
entire motion path performed by robots. In Ghostview the
viewer captures successive snapshots of the robot along the
trajectory movement (Figure 10). Thus, it may be used to
visualize the robot at different points in the simulation. The
later feature, Point Trajectory, allows visualization of the
trajectory of a point, such as a joint or a link.

Fig. 10. Robot Trajectory visualization in Ghostview mode.

<!-- Camera -->

<gazebo reference="linkCamera1">

<sensor:camera name="linkCameral">
<imageSize>512 512</imageSize>
<imageFormat>R8G8B8</imageFormat>
<hfov>0.7853982</hfov>
<nearClip>0.01</nearClip>
<farClip>4.5</farClip>
<updateRate>0.25</updateRate>

</sensor:camera>

</gazebo>

357

The SimUEP-Robotics can be used in desktop
environments as well as in immersive environments such as
CAVE, PowerWalls and other projection systems. One can
navigate in the environment by means of specific controls such
as 3D trackers.

V. SCENE EDITOR

SimUEP-Robotics has a tree scene editor to compose scenes
and robots (Figure 11). The editor provides access to a library
of objects to compose common offshore and subsea scenarios
and save it as Scene File (Figure 2). Besides this, it also has a
collection of complete robots and pieces of robots, such as
links, sensors and actuators. The interface uses drag-and-drop
interaction to facilitate the composition of the objects in 3D
space. The user can construct a robot (URDF file) from scratch
by moving links individually from the library to the 3D
scenarios, and finally creating joints between then.

Fig. 11. SimUEP Robotics scene editor.

VI. CONCLUSION

Hostile environments are seen as one of the greatest challenges
for oil & gas companies developing new fields. The use of
robots in these situations is foreseen as a great opportunity for
the robotics industry. Thus a lot of effort and investments are
being pushed on the development of specialized robots for
those environments. This development can be extremely
improved if proper tools and methodologies are used.

Tools such as simulators and immersive visualization are
promising development strategies, providing an environment
for testing and visual debugging. The ability to compare
different simulations with the support of different visualization
tools can help in the interpretation of virtual simulated tasks
allowing the development of new robots and, eventually, more
appropriate offshore scenarios and tools to accomplish the
proposed tasks. Furthermore, development methodologies that
focus on the reuse of resources are extremely important to give
flexibility in the process of developing new products.

The work presented here is based on the above mentioned
development strategies by creating flexible development
environment to support the modeling and visualization of the
simulation of actual operations performed with robots in
Stationary Production Units. ROS as communication
middleware provides a powerful framework to create and reuse

different robot algorithms. In the same way, the use of
SimUEP-Robotics component-based platform resulted in the
development of a flexible and useful framework and scene
editor, which can be considered as a rich visual debugger to
support the development process and to analyze the results of
the simulations. Such component approach gave the possibility
to develop different offshore robot applications paving the way
towards platform robotizing furnishing the robotization and
automation of offshore facilities.

ACKNOWLEDGMENTS

Thanks to Petrobras for supporting this project. The authors
would also like to thank the support provided by the research
funding organizations CNPq and FAPERJ.

REFERENCES

[1] ABB. RobotStudio. 2001.
http://new.abb.com/products/robotics/robotstudio.

[2] Bjerkeng, M., A. A. Transeth, K. Y. Pettersen, E. Kyrkjebo, and S. A.
Fjerdingen. "Active Camera Control with obstacle avoidance for remote
operations with industrial manipulators: Implementation and
experimental results." Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. 2011. 247-254.

[3] Bradski, G. “The OpenCV Library.” Dr. Dobb's Journal of Software
Tools. 2000.

[4] Coppelia Robotics. Virtual Robot Experimentation Platform (V-REP).
2010. http://www.coppeliarobotics.com/.

[5] Cyberbotics. Webots 7. 1996. http://www.cyberbotics.com/.

[6] Flacco, F., T. Kroger, A. De Luca, and O. Khatib. "A depth space
approach to human-robot collision avoidance." Robotics and
Automation (ICRA), 2012 IEEE International Conference on. 2012.
338-345.

[7] From, P.J. Off-Shore Robotics - Robust and Optimal Solutions for
Autonomous Operation. PhD Thesis: Norwegian University of Science
and Technology, 2010.

[8] Hornung, A., Wurm, K. M., Bennewitz, M. Stachniss, C. & Burgard, W.
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees.” Autonomous Robots, 2013.

[9] Johnsen, S. O., Ask, R. & Roisli, R. “Reducing Risk in Oil and Gas
Production Operations.” IFIP International Federation for Information
Processing (Springer New York) 253 (2007): 83–95.

[10] Liu Hsu, Costa, R.R., Lizarralde, F. & Da Cunha, J.P.V.S. “Dynamic
positioning of remotely operated underwater vehicles.” Robotics &
Automation Magazine, IEEE, Sep de 2000: 21-31.

[11] Microsoft Corp. Microsoft Robot Developer Studio (RDS). 2010.
http://www.microsoft.com/robotics/.

[12] Moghaddam, A. F. , Lange, M., Mirmotahari, O. & Hovin, M. “Novel
Mobile Climbing Robot Agent for Offshore Platforms.” World Academy
of Science, Engineering and Technology, n. 68 (2012): 29-35.

[13] Quigley, M., Conley, K., Gerkey, B. P.., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., and Ng, A. Y. “ROS: an open-source Robot Operating
System.” ICRA Workshop on Open Source Software. 2009.

[14] ROCK. Rock: The Robot Construction Kit. 2012. http://rock-
robotics.org.

[15] ROS-Industrial™ Consortium. ROS-Industrial. 2012.
http://www.rosindustrial.org/.

[16] Siciliano, B., L. Sciavicco, L. Villani, and G. Oriolo. Robotics:
Modeling, Planning and Control. Springer-Verlag London Ltd., 2009.

[17] Technologies, Unity3D. s.d. http://unity3d.com/.

358

Powered by TCPDF (www.tcpdf.org)

