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Abstract— Remote locations such as ultra-deep water 

reservoirs (400 m or deeper) have been increasing the production 

complexity and logistic costs for Oil & Gas industry. In such 

conditions, oil exploration feasibility depends on new 

technologies to optimize production efficiency. One possible 

solution to this challenge is to increase the degree of automation 

in production units. New design concepts consider the use of 

robotic devices in such scenarios. In this paper we present the use 

of virtual reality techniques in a robotics framework, SimUEP-

Robotics (Robotics Simulator for Stationary Production Units), 

aimed to enable planning the offshore platform robotizing. 

SimUEP-Robotics has an integrated Virtual Reality Engine 

specially tailored to provide realistic visualization of large 

offshore scene models in an immersive environment. Through the 

use of those visualization tools it is possible, for example, to better 

understand the quality of the planned robot trajectory and 

propose new algorithms that can be further evaluated in the 

virtual environment. We argue that the validation process in an 

immersive virtual environment reduces risks and costs of real 

operation tests scenarios.  
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I.  INTRODUCTION 

The vast majority of new Oil & Gas fields present high 
production complexity and logistic costs, in addition to several 
other challenges. In Brazil, exploration in the pre-salt layer 
represents a mark in the oil industry, breaking production 
records in deep and ultra deep waters. The pre-salt platforms 
operate far away from the coasts at distances that can exceed 
300 km, increasing significantly transportation costs, logistics 
infrastructure and response time, especially in emergency 
situations. Under such conditions, oil exploration feasibility 
depends on new technologies to optimize production 
efficiency. 

Robotics and automation can greatly improve the 
operational quality and productivity of offshore Oil & Gas 
installations (From 2010). Robots can work non-stop without 
the need for intervals and pauses, are less prone to errors, and 
also more reliable than human workers. This can increase the 
operation of the platform by reducing down-time and 
production stops, which are main concerns for the platform 
operators. Introducing robotic and autonomous solutions will 
also decrease costs related to commissioning and logistics, 

particularly by avoiding flying human operators to distant 
fields. (S. O. Johnsen 2007). 

The next generation of offshore platforms will present high 
degree of automation. New design concepts consider the use of 
robotic systems to accomplish autonomous or teleoperated 
tasks on production plants, even though there are several 
technological challenges that should be overcome to have 
feasible robotics technology available offshore. In this paper, 
we propose an offshore robotics framework as a first step to 
enable the planning of offshore platform robotizing, using 
auxiliary virtual reality tools and techniques aiming to improve 
the understanding of the planned task throughout its execution 
in an immersive environment. 

The SimUEP-Robotics is formulated concerning the 
offshore requirements. It is a flexible framework that allows 
rapid prototyping development of new applications through the 
addition of customized robots and devices in the target scenario 
by the use of an interactive editor. The proposed framework 
also simplifies the development and validation of the control 
algorithms by integrating virtual and real robots, sensors and 
different scenarios.  

Virtual Reality (VR) technologies can improve the 
understanding of any engineering project. In the present work 
those techniques are used for visualizing the offshore platform 
robotizing activities. Immersive visualization environments for 
robotics simulation have the potential to reduce the complexity 
and difficulty in visualizing and validating simulations of 
operations performed by robots on a real Stationary Production 
Unity (SPU). The visualization tools manage data and present 
visual information that enables professionals to observe and 
acquire a better understanding of problems, such as robot 
motion planning. Without visualization, it is hard to understand 
the quality of the solution found for the movement of the robot 
based only on simulation results. Validation reduces risks and 
costs of testing operations in real scenarios. 

II. RELATED WORKS 

Different robotic frameworks and simulation platforms have 
been developed both for research purposes and industrial 
applications. However some important functionality present in 
our proposed framework is absent in the existing ones. Before 
starting the development of SimUEP-Robotics we made a 
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thoroughly comparison among the most advanced tools 
available in the market at that time (2011), such as Webots 
(Cyberbotics 1996), Microsoft Robotics Developer Studio 
(Microsoft Corp. 2010), V-REP (Coppelia Robotics 2010) and 
ROS (Quigley 2009); and other industrial application tools 
such as RobotStudio (ABB 2001) and ROS industrial (ROS-
Industrial™ Consortium 2012). 

Webots is a fast prototyping and simulation software for 
mobile robotics. Complex robotic scenarios can be designed, 
with different robots that can be equipped with simulated 
sensors and actuators. The advantages are that the robot 
controller can be programmed with other development 
environments and that it is available on any operation system 
(OS). The main disadvantage is that it requires a paid license to 
have full capabilities and an annual renewal license for 
software update. The ability to build a customized scenario is a 
feature also presented in SimUEP-Robotics. In our solution, the 
robot controller can also be programmed by external Robotics 
Simulators as long as they are compatible with ROS (Figure 1).   

Robotics Developer Studio (RDS) is a Windows-based 
environment for robot control and simulation developed by 
Microsoft. RDS is based on Concurrency and Coordination 
Runtime (CCR) and Decentralized Software Services (DSS) 
concepts. The first one is a .NET-based concurrent library 
implementation that manages asynchronous parallel tasks. The 
second is a lightweight state-oriented service model which 
allows multiple services to run on a single node achieving 
complex behaviors. The current version, RDS 4, is free. 
However, it only works with Windows. In our solution we also 
use ROS and its ecosystem’s components. 

V-REP is a virtual robot experimentation platform that has 
an integrated development environment and is based on a 
distributed control architecture. In this way, objects can be 
controlled via an embedded script, a plugin, a ROS node, a 
remote API client or a custom solution. V-REP is open-source, 
but requires payment to have all functionalities. We also 
perceived the V-REP integration with ROS as a promised 
solution that we decided to pursuit. 

RobotStudio is a simulation and offline programming 
software that was developed by ABB Robotics. RobotStudio is 
built on top of the ABB VirtualController, which is an exact 
copy of the software that runs on the robots from ABB. In this 
way tasks like training can be performed without disturbing 
production. The program requires a paid license to have all 
functionalities and is restricted to ABB models. 

The Robot Operating System (ROS) is a multiplatform 
meta OS which establishes a communication layer and some 
services and applications provided through a package 
framework. It is a software framework for robot software 
development, providing operating system-like functionality on 
a heterogeneous computer cluster. Willow Garage maintains 
the core system with an open-source free software license. An 
extensive worldwide community efficiently expands it. As an 
OS it provides hardware abstraction, low-level device control, 
user transparent inter process connection and communication 
based on the message passing paradigm. The process nodes are 
identified by its corresponding IP address, so network nodes 
integration is automatically implemented. It also provides tools 

and libraries for obtaining, building, writing, and running code 
across multiple computers. ROS is similar in some respects to a 
“robot framework”. 

For robotics simulation, ROS ecosystem integrates the 
Gazebo project, which is a three dimensional multi robot 
simulator providing sensor data and physical interaction 
between objects. The Gazebo integration with ROS inspired 
very much our solution indeed. In fact, we decided to create 
SimUEP-Robotics due to the lack of powerful VR tools and 
techniques in the ROS ecosystem. 

When considering industrial applications, ROS-Industrial is 
a BSD-licensed software library which extends the capabilities 
of the ROS software to industrial applications. It is a recent 
initiative from Southwest Research Institute (SwRI), being 
supported by the ROS-IndustrialTM Consortium (RIC). 

III. SIMUEP-ROBOTICS ARCHITECTURE 

In robotics applications, the classic programming approach of 
writing a specific code to each project is being modified. The 
new programming paradigm is the use of multiple reusable 
subtask programs to accomplish current and future tasks. This 
not only decreases the rework of researchers but also reduce 
the project development time. In this context, a flexible 
architecture that permits rapid prototyping of different 
scenarios and applications is a valuable tool for the industry. 
Additionally, integrating virtual and real robots, environments, 
sensors and objects improves the development capacities. 

As mentioned earlier ROS framework establishes a 
communication layer between different process and devices, 
providing broadcast topics with periodic messages and on 
demand services. Furthermore, ROS focuses on the message 
content, letting the sender and receiver transparent to each 
other. In virtual and real environment integration scenarios, this 
transparency permits to change between resources without 
code reimplementation. To increase the portability of 
applications, standard messages to common required resources, 
such as laser range finders and robot’s joint state, are available. 

 

Fig. 1. Diagram representing the SimUEP’s component based architecture. 

Figure 1 shows the SIMUEP-Robotics architecture, which 
is component-based having, among other components, the VR-
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Engine, which is responsible for the visualization of the 
simulation of actual operations performed with robots in 
offshore scenarios. Other components of the framework 
provide resources for manipulating different 3D input devices, 
3D interaction techniques, audio and video streaming, 
collaboration and a communication interface bridge to the ROS 
system, named ROS-Bridge. 

In the following sections, we present further information 
about ROS Bridge and the Robotics-Simulator Modules 
currently available: Topside Offshore Simulator and 
Underwater ROV Simulator. 

A. Ros Bridge  

The ROS Bridge is responsible for exchanging data between 
ROS compatible robotics simulators and the virtual robots 
created by the VR-Engine according to the target virtual 
scenario where the robotic task is being executed. The main 
goal of development of ROS Bridge is to make the data from 
the VR-Engine available to ROS compatible simulators. Data 
communication between the VR-Engine and ROS applications 
are controlled by ROS Nodes, which are processing units 
capable of establishing communication with each other through 
topics or services: 

• Topics: structures that store messages in an 
asynchronous communication model (public/subscribe). 
The nodes publish and receive information in topics that 
are identified by names. 

• Services: asynchronous communication with 
client/server architecture (one provider, multiple users). 

The integration of ROS in SimUEP-Robotics (Figure 2) 
allows the creation of a communication layer between the 
visualization of a virtual scene and the simulation of real 
robot’s tasks. The exchanged messages are similar to those 
used to control real robots. 

 

Fig. 2. ROS integration in SimUEP 

The SIMUEP component based approach enables the 
creation of new "bridges" to other robot frameworks, like Rock 
(ROCK 2012) that is in our near future development plans. 

B. Robotics Simulator Modules 

At present, the SimUEP-Robotics has two robotics simulator 
modules implemented allowing us to instantiate two different 
applications: one for topside offshore operations and another 
for sub-sea engineering. For the topside, the robot simulation 
strategy depends on the used virtual device and the task that 
should be planned. As a proof-of-concept we have developed a 
pick-and-place task in a typical offshore scenario. In the second 
application, the ROV simulator module implements the 
dynamic motion equations for an underwater ROV vehicle 
from Liu Hsu et. al. (2000) (Figure 3). SimUEP-Robotics can 
be extended with other ROS compatible robotic simulators 
addressing other operation problems. 

 

Fig. 3. Visualization of ROV Trajectory using virtual realty techniques. 

The robotics-simulator modules implementation seamlessly 
integrates some open-source community maintained ROS 
packages according to its needs. This integration is driven by 
the definition of the robots on the Unified Robot Description 
File (URDF) associated to its virtual robot used in the target 
scenario. The URDF is an XML file format that provides 
information about robots and associated sensors (e.g., laser, 
camera), trough joints and links definition at different levels 
such as kinematic, dynamic and visual. Sensors can be 
incorporated using the Gazebo interface, which will be 
described later. 

Upon reading the robot URDF files in the scene the 
Robotics-Simulator configures the necessary standard 
messages to interact with sensors and robots. In addition, it 
uses different ROS integrated libraries and packages to perform 
tasks like: navigate with mobile robots (navigation stack), 
transform data through different coordinate systems (TF 
package), build 3D maps (OctoMap) and process images 
(OpenCV). 

After selecting one of the SimUEP-Robotics available 
applications (instantiated by selecting an specific Robotics-
Simulator module according to the addressed task), the VR-
Engine reads the scene description defined by the user and the 
related URDF files to create the virtual environment together 
with the visual representations of the robots (Figure 4, steps 1 
to 3). The ROS-Bridge is responsible for creating a ROS’s root 
node and exchanging information through its associated ROS 
topics and services. Some of those created topics are the 
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sensor’s camera and laser information for each virtual sensor 
instantiated in the virtual scenario according to its URDF 
definition. After that, the VR-Engine starts the corresponding 
simulation module that communicates with robots controllers 
and read sensor data (Figure 4, steps 4 to 7). Besides that, it 
also starts services to calculate robot's dynamics and kinematic 
under request of other nodes (see Figure 4, step 8). The robot's 
behavior in virtual environment (yellow side) is the same in the 
real environment (red side). In fact, we have conducted some 
experiments in the university’s lab confirming this assumption 
using the same Robot Simulator Module. 

 

Fig. 4. Diagram representing the Robotics Modules interaction with 

SimUEP’s ROS Bridge 

In the following section, we describe the SimUEP-Robotics 
Virtual Environment main features and VR tools available to 
Robotics-Simulator modules. 

IV. VIRTUAL ENVIRONMENT 

In any instantiated SimUEP-Robotics application, the 
virtual environment is loaded from a scene description file. 
This file contains a scene description of the target scenario. A 
scenario is basically composed by an observer, environment 
objects, lights and robots. 

SimUEP-Robotics uses the game engine Unity3D as its 
graphic engine component. Unity3D is a tool for developing 
games created by Unity Technologies. This engine was chosen 
due to resources and graphic quality it provides, enabling the 
creation of realistic environments. 

A. 3D Scene Description 

The scene description is an XML file that describes the target 
scenario. It has a hierarchical structure describing all items in 
the environment. The first item of this file is displaySettings, 
which defines the properties of virtual camera (near and far 
planes) and output settings to enable visualization modes for 
immersive systems, e.g., CAVEs, PowerWalls and other 
projection systems. Global settings of the physics engine, such 
as update frequency and gravity vector are specified in item 
physicsSettings. The user visualizes the scene by specifying the 
observer item, which has properties such as position, 
orientation, height and speed. All the lights are defined inside 
the item lights. They can be of type point, spot and directional. 
Common attributes are position, orientation, color, intensity 
and type of shadow. The scene objects are specified by 
envObjects items. For each envObject the following attributes 
are required: position, orientation, bounding box, mesh, and 

some physical properties, such as mass, inertia matrix and 
material information (friction, bounciness, etc). 

Each robot in the scenario file is defined by a URDF, a 
position and a set of actuators and sensors. Some of these 
sensors are also defined in the URDF, for example, cameras 
and lasers. For each sensor and actuator, it is necessary to 
define a topic name to identify the associated ROS message. 

B. Virtual Robotic System 

We have implemented eight different ROS compatible robots, 
namely, Motoman DIA10, Motoman SDA10, Grant Crane, 
Seekur, a generic ROV, Baxter and ROV XLS 150. Six of 
them are in the Figure 5. Any robot can be instantiated in any 
application and positioned (position, attitude and scale) defined 
in the 3D scene file of the target scenario. 

  

 

 
Fig. 5. Six Robots available in SimUEP-Robotics (Puma560, Motoman 

DIA10, MotoMan SDA10, Grant Crane, SeekUR and ROV). 

C. Actuators 

The actuators are used to modify some positional aspects of the 
robots. There are two actuators available: the first one is based 
on the use of joint values; and the second on the absolute 
position of the whole robot. 

D. Sensors 

Sensors are used for a robot to perceive the environment and, 
through them, being able to react to its surroundings. Each 
robot may be composed of one or more types of sensors. In 
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SimUEP Robotics, four different types of sensors are available: 
lasers, cameras, proximity sensors, and collision sensors. 

Camera sensors are able to generate images from the virtual 
environment. A robot can have multiple camera sensors that 
are normally positioned along its links. This positioning allows 
the visualization of different views of the same robot at the 
same time. Each camera is described (within the URDF file) 
following the description format SDF (from Gazebo Project) 
and has attributes such as image size, lens aperture, pixel 
format, among others (Figure 6). The Virtual Environment 
camera sensor component is responsible for capturing data 
from the camera and sending them to the Robotics-Simulator 
Module through the associated ROS topic defined in the robot 
URDF file. A feature that generates a visual representation of 
these cameras is available. 

 

Fig. 6. Camera sensor description in URDF file. 

Robots can also use sensors like lasers. These are used to 
recognize the environment through a one-dimensional scan. As 
a result of this scan a vector containing values corresponding to 
the distance between the laser and the obstacle of the 
corresponding scenario is obtained. Figure 7 shows the visual 
representation of two lasers in SimUEP, as well as images that 
represent the distance vector captured by each one. The laser 
sensor is also defined in the robot URDF file. Its parameters 
contain information such as the initial position of the sensor, 
resolution and maximum and minimum angles, topic name of 
the message, as well as parameters that control their display in 
virtual scene. 

Collision sensors are sensors that allow the robot to identify 
when an object is close to some of its physical components 
(links).This allows the robot to be able to avoid obstacles, and 
enable the measurement of these obstacles to a certain part of 
the robot. This sensor is implemented by using bounding 
boxes. When any object penetrates a bounding box, all 
interception points are informed (Figure 8) using the message 
sensor_msg/PointCloud2. The description of this sensor is 
present in the scene description file and it has a parameter for 
the precision. 

Proximity sensors are similar to collision sensors; however, 
they only inform the name of the link hit. Basically, when 
something enters a bounding of this sensor, a message is sent to 
ROS.  

E. Visualization Tools  

An important aspect of visualization in SimUEP Robotics is to 
support the evaluation of simulation results as well as the 

validation of different offshore scenarios composed of robots, 
valves and other equipment defined in the scene description 
file. In this scope, the following visualization data can be 
mentioned: Bounding Boxes and Axis Joints (Figure 9). 

 

Fig. 7. Laserscan visualization in SimUEP-Robotics. 

 

Fig. 8. Collision Sensor, the red dots are the intersections points detected in 

the link’s bounding box. 

 

Fig. 9. Axis features of SimUEP Robotics visualizer. 

The SimUEP-Robotics has two extra features, Ghostview 
and 3D Point Trajectory, which allow the visualization of the 
entire motion path performed by robots. In Ghostview the 
viewer captures successive snapshots of the robot along the 
trajectory movement (Figure 10). Thus, it may be used to 
visualize the robot at different points in the simulation. The 
later feature, Point Trajectory, allows visualization of the 
trajectory of a point, such as a joint or a link. 

 

Fig. 10. Robot Trajectory visualization in Ghostview mode. 

<!-- Camera --> 

<gazebo reference="linkCamera1"> 

<sensor:camera name="linkCameral"> 
<imageSize>512 512</imageSize> 
<imageFormat>R8G8B8</imageFormat> 
<hfov>0.7853982</hfov> 
<nearClip>0.01</nearClip> 
<farClip>4.5</farClip> 
<updateRate>0.25</updateRate> 

</sensor:camera> 

</gazebo> 
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The SimUEP-Robotics can be used in desktop 
environments as well as in immersive environments such as 
CAVE, PowerWalls and other projection systems. One can 
navigate in the environment by means of specific controls such 
as 3D trackers. 

V. SCENE EDITOR  

SimUEP-Robotics has a tree scene editor to compose scenes 
and robots (Figure 11). The editor provides access to a library 
of objects to compose common offshore and subsea scenarios 
and save it as Scene File (Figure 2). Besides this, it also has a 
collection of complete robots and pieces of robots, such as 
links, sensors and actuators. The interface uses drag-and-drop 
interaction to facilitate the composition of the objects in 3D 
space. The user can construct a robot (URDF file) from scratch 
by moving links individually from the library to the 3D 
scenarios, and finally creating joints between then. 

 

Fig. 11. SimUEP Robotics scene editor. 

VI. CONCLUSION 

Hostile environments are seen as one of the greatest challenges 
for oil & gas companies developing new fields. The use of 
robots in these situations is foreseen as a great opportunity for 
the robotics industry. Thus a lot of effort and investments are 
being pushed on the development of specialized robots for 
those environments. This development can be extremely 
improved if proper tools and methodologies are used.  

Tools such as simulators and immersive visualization are 
promising development strategies, providing an environment 
for testing and visual debugging. The ability to compare 
different simulations with the support of different visualization 
tools can help in the interpretation of virtual simulated tasks 
allowing the development of new robots and, eventually, more 
appropriate offshore scenarios and tools to accomplish the 
proposed tasks. Furthermore, development methodologies that 
focus on the reuse of resources are extremely important to give 
flexibility in the process of developing new products. 

The work presented here is based on the above mentioned 
development strategies by creating flexible development 
environment to support the modeling and visualization of the 
simulation of actual operations performed with robots in 
Stationary Production Units. ROS as communication 
middleware provides a powerful framework to create and reuse 

different robot algorithms. In the same way, the use of 
SimUEP-Robotics component-based platform resulted in the 
development of a flexible and useful framework and scene 
editor, which can be considered as a rich visual debugger to 
support the development process and to analyze the results of 
the simulations. Such component approach gave the possibility 
to develop different offshore robot applications paving the way 
towards platform robotizing furnishing the robotization and 
automation of offshore facilities. 

ACKNOWLEDGMENTS 

Thanks to Petrobras for supporting this project. The authors 
would also like to thank the support provided by the research 
funding organizations CNPq and FAPERJ. 

REFERENCES 

[1] ABB. RobotStudio. 2001. 
http://new.abb.com/products/robotics/robotstudio. 

[2] Bjerkeng, M., A. A. Transeth, K. Y. Pettersen, E. Kyrkjebo, and S. A. 
Fjerdingen. "Active Camera Control with obstacle avoidance for remote 
operations with industrial manipulators: Implementation and 
experimental results." Intelligent Robots and Systems (IROS), 2011 
IEEE/RSJ International Conference on. 2011. 247-254. 

[3] Bradski, G. “The OpenCV Library.” Dr. Dobb's Journal of Software 
Tools. 2000. 

[4] Coppelia Robotics. Virtual Robot Experimentation Platform (V-REP). 
2010. http://www.coppeliarobotics.com/. 

[5] Cyberbotics. Webots 7. 1996. http://www.cyberbotics.com/. 

[6] Flacco, F., T. Kroger, A. De Luca, and O. Khatib. "A depth space 
approach to human-robot collision avoidance." Robotics and 
Automation (ICRA), 2012 IEEE International Conference on. 2012. 
338-345. 

[7] From, P.J. Off-Shore Robotics - Robust and Optimal Solutions for 
Autonomous Operation. PhD Thesis: Norwegian University of Science 
and Technology, 2010. 

[8] Hornung, A., Wurm, K. M., Bennewitz, M. Stachniss, C. & Burgard, W. 
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on 
Octrees.” Autonomous Robots, 2013. 

[9] Johnsen, S. O., Ask, R. & Roisli, R. “Reducing Risk in Oil and Gas 
Production Operations.” IFIP International Federation for Information 
Processing (Springer New York) 253 (2007): 83–95. 

[10] Liu Hsu, Costa, R.R., Lizarralde, F. & Da Cunha, J.P.V.S. “Dynamic 
positioning of remotely operated underwater vehicles.” Robotics & 
Automation Magazine, IEEE, Sep de 2000: 21-31. 

[11] Microsoft Corp. Microsoft Robot Developer Studio (RDS). 2010. 
http://www.microsoft.com/robotics/. 

[12] Moghaddam, A. F. , Lange, M., Mirmotahari, O. & Hovin, M. “Novel 
Mobile Climbing Robot Agent for Offshore Platforms.” World Academy 
of Science, Engineering and Technology, n. 68 (2012): 29-35. 

[13] Quigley, M., Conley, K., Gerkey, B. P.., Faust, J., Foote, T., Leibs, J., 
Wheeler, R., and Ng, A. Y. “ROS: an open-source Robot Operating 
System.” ICRA Workshop on Open Source Software. 2009. 

[14] ROCK. Rock: The Robot Construction Kit. 2012. http://rock-
robotics.org. 

[15] ROS-Industrial™ Consortium. ROS-Industrial. 2012. 
http://www.rosindustrial.org/. 

[16] Siciliano, B., L. Sciavicco, L. Villani, and G. Oriolo. Robotics: 
Modeling, Planning and Control. Springer-Verlag London Ltd., 2009. 

[17] Technologies, Unity3D. s.d. http://unity3d.com/. 

 

 

358

Powered by TCPDF (www.tcpdf.org)


