
SVR 2007 - Minicurso MC-4

Open Scene Graph: conceitos básicos e aplicações

em realidade virtual

Open Scene Graph: Basic Concepts and

Applications in Virtual Reality

Leandro Motta Barros
UNISINOS

lmb <at> stackedboxes.org

Luiz Gonzaga da Silveira Jr
UNISINOS

luiz <at> omni3.org

Alberto Barbosa Raposo
Tecgraf / PUC-Rio

abraposo <at> tecgraf.puc-rio.br

April 27, 2007

abraposo
Text Box
Minicurso apresentado no:
IX Symposium on Virtual and Augmented Reality - SVR 2007. Petrópolis, RJ, Maio 2007.

Contents

1 Introduction 1

1.1 The question is: “what is a scene graph?” 2
1.2 The question is: “who cares?” 3
1.3 Something OSG-related, at last 4
1.4 Memory Management . 6

2 Two 3D Viewers 11

2.1 A very simple viewer . 11
2.2 A simple (and somewhat buggy) 3D viewer 14

3 Enter the StateSets 18

3.1 OpenGL as a state machine 18
3.2 OSG and the OpenGL state 19
3.3 A simple (and bugless) 3D viewer 20

4 File IO: loading and saving 23

5 Working together: OSG and Cal3D, OSG and ODE 24

5.1 Skeleton animation: Cal3D 25
5.2 Rigid Body Dynamics: ODE 27
5.3 Beyond the Straight Line . 32

6 Past, Present and Future? Questions For God 32

A Rough equivalences between OpenGL and OSG 33

1 Introduction

This document is a short introduction to Open Scene Graph (OSG). It
is open source, cross-platform and high performance 3-D graphics toolkit.
It intends to be useful in fields such as visual simulation, games, virtual
reality, scientific visualization and modelling. So, Written in Standard C++

1

and OpenGL, it runs on all Windows platforms, OSX, GNU/Linux, IRIX,
Solaris, HP-Ux, AIX and FreeBSD operating systems.

The OSGtoolkit is an extensible high-level abstraction layer above OpenGL,
that provides more productive programming interface to support the de-
velopment of computer graphics application. A hierarchical structure for
efficient rendering, employment of memory management techniques, and
capabilities for 2-D/3-D models, give all conditions to OSG to be a good
choice for graphics programmers.

Before talking about the Open Scene Graph (OSG), it is interesting to
spend a little time giving some clues about a slightly more fundamental
question.

1.1 The question is: “what is a scene graph?”

As the name suggests, a scene graph is data structure used to organize a
scene in a Computer Graphics application. The idea is that a scene is usually
decomposed in several different parts, and somehow these parts have to be
tied together. So, a scene graph is a graph where every node represents one
of the parts in which a scene can be divided. Being a little more strict,
a scene graph is a directed acyclic graph, so it establishes a hierarchical
relationship among the nodes.

Suppose you want to render a scene consisting of a road and a truck. A
scene graph representing this scene is depicted in Figure 1.

Figure 1: A scene graph, consisting of a road and a truck.

It turns out that there is a great chance that if you render this scene
just like it is, the truck will not appear on the place you want. Most likely,
you’ll have to translate it to its right position. Fortunately, scene graph

2

nodes don’t always represent geometry.1 In this case, you can add a node
representing a translation, yielding the scene graph shown on Figure 2.

Figure 2: A scene graph, consisting of a road and a translated truck.

Perhaps you are now wondering why is a scene graph called a graph if
they all look like trees? Well, the examples so far were trees, but that is
not always the case. Let’s add two boxes to the scene, one on the truck, the
other one on the road. Both boxes will have translation nodes above them,
so that they can be placed at their proper locations. Furthermore, the box
on the truck will also be translated by the truck translation, so that if we
move the truck, the box will move, too. The news is that, since both boxes
look exactly the same, you don’t have to create a node for each one of them.
One node “referenced” twice does the trick, as Figure 3 illustrates. During
rendering, the “Box” node will be visited (and rendered) twice, but some
memory is spared because the model is loaded just once.

Of course, scene graphs can get more complicated than this. Hopefully,
though, the simple notion just presented is enough for now. So, it’s time to
say a couple more words concerning a second fundamental question.

1.2 The question is: “who cares?”

Anyone needing a neat data structure to organize a Computer Graphics
scene and wanting to render the scene efficiently cares. Scene graphs expose
model’s geometry and rendering state, in case OSG do it related to OpenGL
and also provide additional features and functionalities. The scene graph

1Indeed, the node labeled “World” in Figure 1 doesn’t represent geometry, it represents
a group of some nodes (namely, “Truck” and “Road”).

3

Figure 3: A scene graph, consisting of a road, a truck and a pair of boxes.

tree structure lends an intuitive spatial organization, view frustum and oc-
clusion culling, view-dependent rendering at varying level of details, state
change minimization, file I/O, and rendering effects support.

A simplest scene graph implementation provides mechanisms to store ge-
ometry and appearance, and draw the scene by performing structure traver-
sal. So, the main traversal task is to send stored data to the graphic card,
trough OpenGL calls. OSG performs traversal taking account scene up-
dates, culling and finally the drawing. Observe that stereo applications
require more than one traversal by frame.

1.3 Something OSG-related, at last

Up to this point, the discussion was around “generic” scene graphs. From
now on, all examples will use exclusively OSG scene graphs, that is, instead
of using a generic “Translation” node, we’ll be using an instance of a real
class defined in the OSG hierarchy.

A node in OSG is represented by the osg::Node class. Although tech-
nically possible, there is not much use in instantiating osg::Nodes. Things
start to get interesting when we look at some of osg::Node’s subclasses.
In this section, three of these subclasses will be introduced: osg::Geode,
osg::Group and osg::PositionAttitudeTransform.

Renderable things in OSG are represented by instances of the osg::

Drawable class. But osg::Drawables are not nodes, so we cannot attach

4

them directly to a scene graph. It is necessary to use a “geometry node”,
osg::Geode, instead.

Not every node in an OSG scene graph can have other nodes attached
to them as children. In fact, we can only add children to nodes that are
instances of osg::Group or one of its subclasses.

Using osg::Geodes and an osg::Group, it is possible to recreate the
scene graph from Figure 1 using real classes from OSG. The result is shown
in Figure 4.

Figure 4: An OSG scene graph, consisting of a road and a truck. Instances
of OSG classes derived from osg::Node are drawn in rounded boxes with
the class name inside it. osg::Drawables are represented as rectangles.

That’s not the only way to translate the scene graph from Figure 1 to a
real OSG scene graph. More than one osg::Drawable can be attached to a
single osg::Geode, so that the scene graph depicted in Figure 5 is also an
OSG version of Figure 1.

Figure 5: An alternative OSG scene graph representing the same scene as
the one in Figure 4.

The scene graphs of Figures 4 and 5 has the same problem as
the one in the Figure 1: the truck will probably be at the wrong
position. And the solution is the same as before: translating the
truck. In OSG, probably the simplest way to translate a node is by

5

adding an osg::PositionAttitudeTransform node above it. An osg::

PositionAttitudeTransform has associate to it not only a translation, but
also an attitude and a scale. Although not exactly the same thing, this
can be though as the OSG equivalent to the OpenGL calls glTranslate(),
glRotate() and glScale(). Figure 6 is the OSGfied version of Figure 2.

Figure 6: An OSG scene graph, consisting of a road and a translated truck.
For compactness reasons, osg::PositionAttitudeTransform is written as
osg::PAT.

For completeness, Figure 7 the OSG way to represent the “generic” scene
graph from Figure 3.

1.4 Memory Management

Save the whales. Feed the hungry. Free the mallocs.

— fortune(6)

Sadly, it looks like quite a few C++ users are unfortunate enough to not
be proficient with smart pointers. Since OSG uses smart pointers exten-
sively2, it seems worthwhile to spend some time explaining them. Don’t
dare to skip this section if “smart pointers” sounds like Greek for you (and
you are not Greek, that’s it).

Let’s start with a definition: a resource is something that must be al-
located before being used and deallocated when no longer needed. Perhaps

2Indeed, every program should.

6

Figure 7: An OSG scene graph, consisting of a road, a truck and a pair of
boxes.

the most common resource we use when programming is heap memory, but
many other examples exist. Two common cases are files (which must be
closed after being opened) and database transactions (which have to be
committed or rolled back after being “beginned”). Also in OpenGL there
are some examples of resources (one example are texture names generated
by glGenTextures() which must be freed by glDeleteTextures()).

The most fascinating thing related to resources is the fact that there exist
so many programmers who believe that they can handwrite code capable of
freeing them in every case and will never forget to write such code. This
thinking only leads to resource leaks. The good news is that, with some
discipline, this freeing task can be passed to the C++ compiler, which is
much more reliable than us for tasks like this.

The main ideas behind resource management in C++ are worth of men-
tioning here, but complete discussion about this is beyond the scope of this
text. Speaking of “scope”, the scope of “automatic” variables (that is, vari-
ables allocated on the stack) plays a central role in resource management in
C++: the language rules guarantee that the destructor of an object allocated

7

on the stack will be called when it gets out of scope. How does this help to
avoid resource leaks? Take a look at the following class:

class ThingWrapper

{

public:

ThingWrapper() { handle_ = AllocateThing(); }

~ThingWrapper() { DeallocateThing (handle_); }

ThingHandle& get() { return handle_; }

private:

ThingHandle handle_;

};

It allocates a Thing in the constructor and frees it in the destructor. So,
whenever we need a Thing we can do something like this:

ThingWrapper thing;

UseThing (thing.get());

Instantiating a ThingWrapper allocates a Thing (in ThingWrapper’s con-
structor). But the nice part is that the Thing will be automatically freed
when thing gets out of scope, since its destructor is guaranteed to execute
when this happens. Voilà. Automatic resource management.

The class ThingWrapper is an example of a C++ programming technique
usually called “resource acquisition is initialization” (raii). A smart pointer
is simply a class3 that uses the raii technique to automatically manage
heap memory. Quite like ThingWrapper, but instead of calling hypothetical
AllocateThing() and DeallocateThing() functions, a smart pointer typ-
ically receives a pointer to newly allocated memory in its constructor and
uses the C++ operator delete to free that memory in the destructor.

In the ThingWrapper example, thing is said to be owner of the Thing
allocated with AllocateThing(), and therefore is responsible for deallocat-
ing it. In OSG, there is an extra detail to complicate the things a little bit:
sometimes an object has more than one owner.4 For example, in the scene

3Or, more commonly, a class template.
4This additional complication is not an OSG exclusivity. “Shared ownership”, as it is

also called, is a common situation in practice.

8

graph shown in Figure 7, the osg::Geode with the box attached to it has
two parents. Which one should be responsible for deallocating it?

In these cases, the resource shall not be deallocated while there is at
least one reference pointing to it. So, most objects in OSG have an internal
counter on the number of references pointing to it.5 The resource (that is,
the object) will only be destroyed when its internal reference count goes
down to zero.

Fortunately, we programmers are not expected to manage these refer-
ence counts manually: that’s why smart pointers exist for. So, in OSG,
smart pointers are implemented as a class template named osg::ref ptr〈〉.
Whenever an OSG object receives a pointer to another OSG object, it is
immediately stored in an osg::ref ptr〈〉. This way, the reference count
of the underlying object is automatically managed, and the object will be
automatically deallocated when it is no longer being referenced by anyone.

The example below shows OSG’s smart pointers in action. The example
is followed by some notes about it.

SmartPointers.cpp

1 #include <cstdlib>

2 #include <iostream>

3 #include <osg/Geode>

4 #include <osg/Group>

5

6 void MayThrow()

7 {

8 if (rand() % 2)

9 throw "Aaaargh!";

10 }

11

12 int main()

13 {

14 try

15 {

16 srand(time(0));

17 osg::ref_ptr<osg::Group> group (new osg::Group());

18

19 // This is OK, albeit a little verbose.

5To be more exact, the objects with an embedded reference count are all those that
are instances of classes derived from osg::Referenced.

9

20 osg::ref_ptr<osg::Geode> aGeode (new osg::Geode());

21 MayThrow();

22 group->addChild (aGeode.get());

23

24 // This is quite safe, too.

25 group->addChild (new osg::Geode());

26

27 // This is dangerous! Don’t do this!

28 osg::Geode* anotherGeode = new osg::Geode();

29 MayThrow();

30 group->addChild (anotherGeode);

31

32 // Say goodbye

33 std::cout << "Oh, fortunate one. No exceptions, no leaks.\n";

34 }

35 catch (...)

36 {

37 std::cerr << "’anotherGeode’ possibly leaked!\n";

38 }

39 }

Concerning the example above, the first thing to notice is that it gives a
first and rough idea on how to create “compose” scene graphs like the ones
shown in the figures on Section 1.3. (For now, this is just for curiosity sake.
The next section will address this properly). The real intent of this example
is showing two safe ways of using OSG’s smart pointers and one dangerous
way to not use them:

• Lines 20 to 22, show one safe way to use the smart pointers: an osg::

ref ptr〈〉 (called aGeode) is explicitly created and initialized with a
newly allocated osg::Geode (the resource) in line 20. At this point,
the reference count of the geode allocated on the heap equals to one
(since there is just one osg::ref ptr〈〉, namely aGeode, pointing to
it.)

A little bit latter, on line 22, the geode is added as a child of a group.
As soon as this happens, the group increments the geode’s reference
to two.

Now, what happens if something bad happens? What happens if the

10

call to MayThrow() at line 21 actually throws? Well, aGeode will get
out of scope and will be destroyed. Its destructor will decrement the
geode’s reference count. And, since it was decremented to zero, it will
also properly dispose the geode. There is no memory leak.

• Line 25 does more or less the same thing as the previous case. The
difference is that the geode is allocated with new and added as group’s
child in a single line of code. This is quite safe, too, because there are
not many bad things that can happen in between (after all, there is
no in between.)

• The bad, wrong, dangerous and condemned way to manage memory is
shown from line 28 to line 30. It looks like the first case, but geode is
allocated with new but stored in a “dumb” pointer. If the MayThrow()
at line 29 throws, nobody will call delete on the geode and it will
leak.

There is another thing that can be said here: osg::Referenced’s
destructor isn’t even public, so you are not able to say delete

anotherGeode. Instances of classes derived from osg::Referenced

(like osg::Geode) are simply meant to be managed automatically by
using osg::ref ptr〈〉s.

So, do the right thing and never write code like in this third case.

2 Two 3D Viewers

In this section we’ll finally have OSG programs that actually show something
on the screen. Both are viewers of 3D models, and illustrate many concepts.

2.1 A very simple viewer

The first viewer is a very simple one. Basically, all it does is loading the file
passed as a command-line parameter and displaying it on the screen. So,
without further delays, here is its source code.

11

VerySimpleViewer.cpp

1 #include <iostream>

2 #include <osgDB/ReadFile>

3 #include <osgProducer/Viewer>

4

5 int main (int argc, char* argv[])

6 {

7 // Check command-line parameters

8 if (argc != 2)

9 {

10 std::cerr << "Usage: " << argv[0] << " <model file>\n";

11 exit (1);

12 }

13

14 // Create a Producer-based viewer

15 osgProducer::Viewer viewer;

16 viewer.setUpViewer (osgProducer::Viewer::STANDARD_SETTINGS);

17

18 // Load the model

19 osg::ref_ptr<osg::Node> loadedModel = osgDB::readNodeFile(argv[1]);

20

21 if (!loadedModel)

22 {

23 std::cerr << "Problem opening ’" << argv[1] << "’\n";

24 exit (1);

25 }

26

27 viewer.setSceneData (loadedModel.get());

28

29 // Enter rendering loop

30 viewer.realize();

31

32 while (!viewer.done())

33 {

34 // Wait for all cull and draw threads to complete.

35 viewer.sync();

36

37 // Update the scene by traversing it with the the update visitor which

38 // will call all node update callbacks and animations.

39 viewer.update();

40

41 // Fire off the cull and draw traversals of the scene.

42 viewer.frame();

43 }

44

45 // Wait for all cull and draw threads to complete before exit.

12

46 viewer.sync();

47 }

This example is pretty simple, but there are quite a few things that can
be said about it. First, notice that OSG, just like OpenGL, is independent
of windowing system. Thus, the task of creating a window with a proper
OpenGL context to draw in is not handled by OSG. In this first example
(and in most other examples to come) this job will be handled by a library
called Open Producer (or simply Producer). Producer is designed to be
efficient, portable, scalable and it can be easily used with OSG.

So, our first example uses a Producer-based viewer instantiated on line 15.
Line 16 sets the viewer up with its standard settings, which include quite a
lot of useful features. Yes, it has quite a lot of useful features, but I’m not
feeling like describing them right now. Try pressing keys and moving the
mouse around while running the example to discover some of these features.

OSG knows how to read (and write) several formats of 3D models and
images, and all the functions and classes related to this are declared in the
namespace osgDB. Line 19 uses of these functions, osgDB::readNodeFile(),
which takes as parameter the name of a file containing a 3D model and re-
turns a pointer to an osg::Node. The returned node contains all informa-
tion necessary to render the 3D properly, including, for example, vertices,
polygons, normals and texture maps.

The node returned by osgDB::readNodeFile() is ready to be added to
a scene graph. In fact, in this simple example, it is the whole scene graph:
notice that at line 27 we tell the viewer what it is expected to view, and it
is exactly the node we got by calling this function.

The call at line 30 “realizes” the viewer’s window, that is, it creates
the window with a proper OpenGL context. And that’s pretty much all
the program does. From this point on, we just make some additional calls
to ensure that our program keeps running forever.6 The loop from line 32
to line 43 is the typical main loop of an application based on OSG and

6Or until the user presses esc, whatever comes first.

13

Producer. And the final call at line 46 simply waits for any remaining
threads to complete before going on.

2.2 A simple (and somewhat buggy) 3D viewer

The next example loads n models passed as command-line parameters. They
are attached to an osg::Switch, and things are made such that just of them
is active at a time. The example also has an event handler that allows the
user to select which one of them is the active. Also, every model has an
osg::PositionAttitudeTransform above it, and the user can change their
scale. The model will get darker or lighter as the scale changes (because
normals are not normalized, this is the “buggy” part). This is the hook for
the next section, in which the problem will be fixed by using a StateSet.

Figure 8 shows the scene graph for the “simple and buggy viewer”. No-
tice the “???”: there may be things below the node returned by osgDB::

readNodeFile() (at least, there is an osg::Drawable. A geode is also
mandatory, but perhaps the node returned is this geode. Anyway, the point
is that it doesn’t matter.) Also, notice the ellipsis, indicating that all models
passed as command-line parameters are added to the scene graph.

Figure 8: The OSG scene graph used in the “simple and buggy viewer”.
For compactness reasons, osg::PositionAttitudeTransform is written as
osg::PAT.

14

SimpleAndBuggyViewer.cpp

1 #include <iostream>

2 #include <osg/PositionAttitudeTransform>

3 #include <osg/Switch>

4 #include <osgDB/ReadFile>

5 #include <osgGA/GUIEventHandler>

6 #include <osgProducer/Viewer>

7

8 osg::ref_ptr<osg::Switch> TheSwitch;

9 unsigned CurrentModel = 0;

10

11 class ViewerEventHandler: public osgGA::GUIEventHandler

12 {

13 public:

14 virtual bool handle (const osgGA::GUIEventAdapter& ea,

15 osgGA::GUIActionAdapter&)

16 {

17 if (ea.getEventType() == osgGA::GUIEventAdapter::KEYUP)

18 {

19 switch (ea.getKey())

20 {

21 // Left key: select previous model

22 case osgGA::GUIEventAdapter::KEY_Left:

23 if (CurrentModel == 0)

24 CurrentModel = TheSwitch->getNumChildren() - 1;

25 else

26 --CurrentModel;

27

28 TheSwitch->setSingleChildOn (CurrentModel);

29

30 return true;

31

32 // Right key: select next model

33 case osgGA::GUIEventAdapter::KEY_Right:

34 if (CurrentModel == TheSwitch->getNumChildren() - 1)

35 CurrentModel = 0;

36 else

37 ++CurrentModel;

38

39 TheSwitch->setSingleChildOn (CurrentModel);

40

41 return true;

42

43 // Up key: increase the current model scale

44 case osgGA::GUIEventAdapter::KEY_Up:

45 {

15

46 osg::ref_ptr<osg::PositionAttitudeTransform> pat =

47 dynamic_cast<osg::PositionAttitudeTransform*>(

48 TheSwitch->getChild (CurrentModel));

49 pat->setScale (pat->getScale() * 1.1);

50

51 return true;

52 }

53

54 // Down key: decrease the current model scale

55 case osgGA::GUIEventAdapter::KEY_Down:

56 {

57 osg::ref_ptr<osg::PositionAttitudeTransform> pat =

58 dynamic_cast<osg::PositionAttitudeTransform*>(

59 TheSwitch->getChild (CurrentModel));

60 pat->setScale (pat->getScale() / 1.1);

61 return true;

62 }

63

64 // Don’t handle other keys

65 default:

66 return false;

67 }

68 }

69 else

70 return false;

71 }

72 };

73

74

75 int main (int argc, char* argv[])

76 {

77 // Check command-line parameters

78 if (argc < 2)

79 {

80 std::cerr << "Usage: " << argv[0]

81 << " <model file> [<model file> ...]\n";

82 exit (1);

83 }

84

85 // Create a Producer-based viewer

86 osgProducer::Viewer viewer;

87 viewer.setUpViewer (osgProducer::Viewer::STANDARD_SETTINGS);

88

89 // Create the event handler and attach it to the viewer

90 osg::ref_ptr<osgGA::GUIEventHandler> eh (new ViewerEventHandler());

91 viewer.getEventHandlerList().push_front (eh);

16

92

93 // Construct the scene graph

94 TheSwitch = osg::ref_ptr<osg::Switch> (new osg::Switch());

95

96 for (int i = 1; i < argc; ++i)

97 {

98 osg::ref_ptr<osg::Node> loadedNode = osgDB::readNodeFile(argv[i]);

99 if (!loadedNode)

100 std::cerr << "Problem opening ’" << argv[i] << "’\n";

101 else

102 {

103 osg::ref_ptr<osg::PositionAttitudeTransform> pat(

104 new osg::PositionAttitudeTransform());

105 pat->addChild (loadedNode.get());

106 TheSwitch->addChild (pat.get());

107 }

108 }

109

110 // Ensure that we have at least on model before going on

111 if (TheSwitch->getNumChildren() == 0)

112 {

113 std::cerr << "No 3D model was loaded. Aborting...\n";

114 exit (1);

115 }

116

117 viewer.setSceneData (TheSwitch.get());

118

119 TheSwitch->setSingleChildOn (0);

120

121 // Enter rendering loop

122 viewer.realize();

123

124 while (!viewer.done())

125 {

126 viewer.sync();

127 viewer.update();

128 viewer.frame();

129 }

130

131 // Wait for all cull and draw threads to complete before exit

132 viewer.sync();

133 }

17

3 Enter the StateSets

There is a very important class in OSG that was not mentioned so far:
osg::StateSet. It is so important that this whole section is dedicated to
it. But, in order to understand the importance of osg::StateSets, one must
have some basic understanding on how does OpenGL work. This OpenGL
background is briefly discussed in the next section. If you are already tired
of reading things entitled “OpenGL as a state machine” feel free to skip to
Section 3.2. Otherwise, keep reading.

3.1 OpenGL as a state machine

OpenGL can be roughly seen as something that transforms vertices into
pixels. Essentially, the programmer says: “Hey, OpenGL, please process
this list of points in 3D space for me.” And, shortly after, OpenGL answers:
“Done! The results are on your 2D screen.” This is not a 100% accurate or
complete description of OpenGL, but for the purposes of this section it is
good enough.

So, OpenGL takes vertices and makes pixels. Suppose we pass four
vertices to OpenGL. Let’s call them v1, v2, v3 and v4. Which pixels should
they originate? Or, rephrasing the question: how should they be rendered?
To begin with, what do these vertices represent? Four “isolated” points?
A quadrilateral? Two line segments (v1–v2 and v3–v4)? Perhaps three line
segments (v1–v2, v2–v3 and v3–v4)? And why not something else?

Going in other direction, what color should the pixels be? Are the ren-
dered things affected by any light source? If they are, how many light sources
are there, where they are and what are their characteristics? And are they
texture mapped?

We could keep asking questions like these for ages (or pages, at least), but
let’s stop here. The important thing to notice is that, although OpenGL
is essentially transforming vertices into pixels, there are lots of different
ways to perform this transformation. And, somehow, we must be able to
“configure” OpenGL so that it does what we want. But how to configure
this plethora of settings?

18

Divide and conquer. There are tons of settings, but they are orthogo-
nal. This means that we can change, for example, lighting settings without
touching the texture mapping settings. Of course there is interaction among
the settings, in the sense that the final color of a pixel depends on both the
lighting and texture mapping settings (and others). The important idea is
that they can be set independently.

From now on, let’s call these OpenGL settings by their more proper
names: attributes and modes (the difference between an attribute and a
mode is not important right now). So, OpenGL has a set of attributes and
modes, and this set of attributes and modes define precisely how OpenGL
behaves. But people soon noticed that writing a long expression like “set
of attributes and modes” is very tiresome, and hence they gave it a shorter
name: “state”.

And this explains the title of this section. OpenGL can be seen as a
state machine. All the important details that define exactly how vertices are
transformed into pixels are part of the OpenGL state. If we were drawing
green things and now want to draw blue things, we have to change the
OpenGL state. If we were drawing things with lighting enabled and now
want to draw things with lighting disabled, we have to change the OpenGL
state. The same goes for texture mapping and everything else.

The obvious question is “how do we change the OpenGL state when
using OSG?” This is answered in the rest of this section.

3.2 OSG and the OpenGL state

OSG provides a mechanism to manipulate OpenGL state directly in scene
graph. In cull traversal geometry with same state are grouped to minimize
state changes, while in draw traversal the current state is tracked to avoid
redundant state changes.

The StateSet class store a set of state values, identified as mode and
attribute. So, any node in a graph can be associate to StateSet. The modes
are analogous to glEnable and glDisable calls. While, attributes allow to
specify state parameters, such as fog color, material properties blending

19

functions and so on.
OSGprovides a mechanism for controlling how state is inherited in scene

graph. By default, all children inherit stateset parameters of your parents,
but can override them, too. However, you can force parent state overrride
child state node, and can protect child node from parent overriding, too.

ON, OFF, OVERRIDE, PROTECTED and INHERIT are parameters to osg::

StateSet::setAttribute().

3.3 A simple (and bugless) 3D viewer

The idea here is to fix the bug in the previous example by calling ss-〉
setMode(GL NORMALIZE,osg::StateAttribute::ON). Perhaps this is too
little change to justify a new example. If it is, we could also use a more
complex osg::StateAttribute.

SimpleAndBuglessViewer.cpp

1 #include <iostream>

2 #include <osg/PositionAttitudeTransform>

3 #include <osg/Switch>

4 #include <osgDB/ReadFile>

5 #include <osgGA/GUIEventHandler>

6 #include <osgProducer/Viewer>

7

8 osg::ref_ptr<osg::Switch> TheSwitch;

9 unsigned CurrentModel = 0;

10

11 class ViewerEventHandler: public osgGA::GUIEventHandler

12 {

13 public:

14 virtual bool handle (const osgGA::GUIEventAdapter& ea,

15 osgGA::GUIActionAdapter&)

16 {

17 if (ea.getEventType() == osgGA::GUIEventAdapter::KEYUP)

18 {

19 switch (ea.getKey())

20 {

21 // Left key: select previous model

22 case osgGA::GUIEventAdapter::KEY_Left:

23 if (CurrentModel == 0)

24 CurrentModel = TheSwitch->getNumChildren() - 1;

25 else

20

26 --CurrentModel;

27

28 TheSwitch->setSingleChildOn (CurrentModel);

29

30 return true;

31

32 // Right key: select next model

33 case osgGA::GUIEventAdapter::KEY_Right:

34 if (CurrentModel == TheSwitch->getNumChildren() - 1)

35 CurrentModel = 0;

36 else

37 ++CurrentModel;

38

39 TheSwitch->setSingleChildOn (CurrentModel);

40

41 return true;

42

43 // Up key: increase the current model scale

44 case osgGA::GUIEventAdapter::KEY_Up:

45 {

46 osg::ref_ptr<osg::PositionAttitudeTransform> pat =

47 dynamic_cast<osg::PositionAttitudeTransform*>(

48 TheSwitch->getChild (CurrentModel));

49 pat->setScale (pat->getScale() * 1.1);

50

51 return true;

52 }

53

54 // Down key: decrease the current model scale

55 case osgGA::GUIEventAdapter::KEY_Down:

56 {

57 osg::ref_ptr<osg::PositionAttitudeTransform> pat =

58 dynamic_cast<osg::PositionAttitudeTransform*>(

59 TheSwitch->getChild (CurrentModel));

60 pat->setScale (pat->getScale() / 1.1);

61 return true;

62 }

63

64 // Don’t handle other keys

65 default:

66 return false;

67 }

68 }

69 else

70 return false;

71 }

21

72 };

73

74

75 int main (int argc, char* argv[])

76 {

77 // Check command-line parameters

78 if (argc < 2)

79 {

80 std::cerr << "Usage: " << argv[0]

81 << " <model file> [<model file> ...]\n";

82 exit (1);

83 }

84

85 // Create a Producer-based viewer

86 osgProducer::Viewer viewer;

87 viewer.setUpViewer (osgProducer::Viewer::STANDARD_SETTINGS);

88

89 // Create the event handler and attach it to the viewer

90 osg::ref_ptr<osgGA::GUIEventHandler> eh (new ViewerEventHandler());

91 viewer.getEventHandlerList().push_front (eh);

92

93 // Construct the scene graph

94 TheSwitch = osg::ref_ptr<osg::Switch> (new osg::Switch());

95

96 for (int i = 1; i < argc; ++i)

97 {

98 osg::ref_ptr<osg::Node> loadedNode = osgDB::readNodeFile(argv[i]);

99 if (!loadedNode)

100 std::cerr << "Problem opening ’" << argv[i] << "’\n";

101 else

102 {

103 osg::ref_ptr<osg::StateSet> ss (loadedNode->getOrCreateStateSet());

104 ss->setMode (GL_NORMALIZE, osg::StateAttribute::ON);

105 osg::ref_ptr<osg::PositionAttitudeTransform> pat(

106 new osg::PositionAttitudeTransform());

107 pat->addChild (loadedNode.get());

108 TheSwitch->addChild (pat.get());

109 }

110 }

111

112 // Ensure that we have at least on model before going on

113 if (TheSwitch->getNumChildren() == 0)

114 {

115 std::cerr << "No 3D model was loaded. Aborting...\n";

116 exit (1);

117 }

22

118

119 viewer.setSceneData (TheSwitch.get());

120

121 TheSwitch->setSingleChildOn (0);

122

123 // Enter rendering loop

124 viewer.realize();

125

126 while (!viewer.done())

127 {

128 viewer.sync();

129 viewer.update();

130 viewer.frame();

131 }

132

133 // Wait for all cull and draw threads to complete before exit

134 viewer.sync();

135 }

The only difference from the previous example are lines 103 and 104.
But, this little difference provides better results, mainly when 3-D models,
modeling in distinc scale, are imported to application.

4 File IO: loading and saving

To develop serious applications, like games and virtual reality complex
scenes, we need fix limitations of low level APIs related to just create models
using few primitives. We need to read complex level, maps and characters
from files. So, that’s the point! The osgDB library will help us. It pro-
vides these functionalities, through letting your program read and write
3-D models. A huge variety of formats are supported, including natives
OSG(.osg - ASCII) and (.ive - binary), OpenFlight (.flt), TerraPage (.txp)
with multi-threading support, LightWave (.lwo), Alias Wavefront (.obj),
Carbon Graphics GEO (.geo), 3D Studio MAX (.3ds), Peformer (.pfb),
Quake Character Models (.md2). Direct X (.x), and Inventor Ascii 2.0
(.iv)/ VRML 1.0 (.wrl), Designer Workshop (.dw) and AC3D (.ac). Besides
OSGincludes image loaders to read and write 2D images. Supported for-
mats include .rgb, .gif, .jpg, .png, .tiff, .pic, .bmp, .dds (include compressed

23

mip mapped imagery), .tga and quicktime (under MacOSX). “A whole set
of high quality, anti-aliased fonts can also be loaded via the freetype plugin”
. But, it’s another history.

The OSG provides an extensible dynamic plugin mechansim for reading
and writing 3D and 2D models from/to files. You just need add following
headers to the applications:

#include <osgDB/ReadFile>

#include <osgDB/WriteFile>

Let’s go. Just reading a lovely cow:

osg::ref_ptr<osg::Node> lmodel = osgDB::readNodeFile(‘‘cow.osg’’);

Right now, just saving a new cow:

bool osgDB::writeNodeFile(lmodel,‘‘cow.osg’’);

If this operation fail, the function returns false. Else, it returns true.
Bingo! The location where file will be save can be absolute or relative, and
existing files are overwritten. For avoiding this behaviour, please check for
existing files.

5 Working together: OSG and Cal3D, OSG and

ODE

Many computer graphics and virtual reality applications require a simple
way way for simulating vehicles, objects in virtual reality environments and
virtual creatures, character animation and efficiently display entire simu-
lation and animation in the 3-D space. Besides, models, images, collision
detection, scene database management, intergration with GUI and human-
interation must be supported.

We have exploited the skeleton animation and rigid body dynamics us-
ing Cal3D (http://cal3d.sourceforge.net) and ODE (www.ode.org), re-
spectively. Here, these libraries have been employ with OSGṠo, OSG pro-
vides functionalities concerned with efficient scene display.

24

5.1 Skeleton animation: Cal3D

Cal3D is a free skeletal-based 3-D character animation library, written in
C++, in a platform/graphic-API independent way. It is compounded by
two main parts: the library and the exporter. The first one is used in
the application development, while exporter take characters (built in a 3D
modeling package) and create the Cal3D-format files read by the library.
So, exporters are actually plug-ins for these 3D modeling packages. For
example, there exists exporters for 3D Studio MAX7, Milkshape 3D and
Blender (under construction).

The basic concept in the Cal3D library is to separate data that can be
shared between several objects from data that is tied to one specific object
instance. In the realm of skeletal character animation there is quite a lot
of shared data: Take the animations and the meshes as examples. The
exporters usually exports skeleton, meshes, materials and animation from
a character model. It allows cal3D library load and animate character in
fashion way.

The Cal3D library does not do graphics, ok?! Programmers are responsi-
ble to put 3D characters in application, by making the relationship between
Cal3D and graphics API. In case, osgCal8 is an adapter for using cal3d in-
side OpenSceneGraph. Let’s go...how can we do this?! First install Cal3D,
and then install osgCal, too. I hope you just have installed OSG. Not yet?!
hummm...do it, right now. So, let’s go! give one looked at following. It
shows a simple demonstration about synergy between Cal3D and OSG us-
ing osgCal.

osgcal.cpp

1

2

3 // headers

4 #include <osgGA/TrackballManipulator>

5 #include <osg/Drawable>

6 #include <osg/Timer>

7For Creating Cal3D Characters with 3D Studio MAX, see a basic tutorial at http:

//cal3d.sourceforge.net/modeling/tutorial.html.
8http://osgcal.sourceforge.net/

25

7 #include <osgProducer/Viewer>

8 #include <osgCal/CoreModel>

9 #include <osgCal/Model>

10

11 //...

12 // a lot of omitted code!

13 //...

14

15 //

16 // osgCal stuffs

17 //

18 // 1. create a core model, the template

19 osgCal::CoreModel *core = new osgCal::CoreModel("dummy");

20 load(core); //< loading some data into it

21

22 // 2. create a concrete model using the core template

23 osgCal::Model *model = new osgCal::Model();

24 model->create(core);

25

26 osgCal::Model *model_2 = new osgCal::Model();

27 model_2->create(core);

28

29 // 3. set the first animation in loop mode,

30 // weight 1, and starting just now

31 model->startLoop(0, 1.0f, 0.0f);

32 model_2->startLoop(1, 1.0f, 0.0f);

33

34 model_2->setTimeScale(1.5f);

35

36 // 4. add to scene graph

37 osg::ref_ptr<osg::Group> escena = new osg::Group();

38 escena->addChild(model);

39 escena->addChild(model_2);

40

41 //

42 // Porducer/OSG roducer stuffs

43 //

44 // 5. construct the viewer.

45 osgProducer::Viewer viewer;

46

47 // 6. set up the value with sensible default event handlers.

48 // see, viewer/model glue!

49 viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS);

50 viewer.setSceneData(escena.get());

51 unsigned int pos = viewer.addCameraManipulator(new MyManipulator(model));

52 viewer.selectCameraManipulator(pos);

26

53 viewer.realize();

54

55 // 7. main loop

56 while (!viewer.done()) {

57 viewer.sync();

58 viewer.update();

59 viewer.frame();

60 }

61 viewer.sync();

62 return 0;

63

The function void load(osgCal::CoreModel *core) loads animation, msh,
material and texture from a model. osgCal::CoreModel is an adapter that
enables reference-counting of core models. It is a reference (a template) for
creating real models, which allows sharing lot of data, like the base geometry
(the geometry before deforming any vertex). It inherits from osg::Object,
then it can be easly added to scene graph (see code: item 4.).

5.2 Rigid Body Dynamics: ODE

ODE (Open Dynamics Engine) is an open source, high performance library
for simulating rigid body dynamics. It is platform independent with an easy
to use C/C++ API. It has advanced joint types and integrated collision
detection with friction. ODE is useful for simulating vehicles, objects in
virtual reality environments and virtual creatures. It is currently used in
many computer games, 3D authoring tools and simulation tools. ODE has
a number of base concepts. Let’s start with the two fundamental ones:

Body this is a solid rigid body whose dynamics will be computed by ODE
during simulation. As so, it does not have a ”shape” or a visual ap-
pearance. It is just a position and orientation , a linear and angular
velocity, and a mass together with an intertia tensor.

World this is what holds a bunch of bodies (dynamic and static) along with
forces, and a current time. Running the physical simulation is just
advancing the world’s time by small steps and updating each bodies

27

dynamics according to the existing forces and the fundamental law of
dynamics.

Besides, a physical simulation is interesting if bodies interact, namely
if they collide, bounce and push each other. To compute such interac-
tions, you know need to know the shape of objects, because this is what
commands when/where/how bodies interact. Thus, ODE has two other
concepts: Geom (describe the shape the geometry of a body) and Space

(holds a bunch of geoms and manages the collision detection). ODE comes
with several flavor of space. The following code shows a simple example,
about an ODE simulation, displayed using OSG. First, required headers:

#include <osg/Geometry>

#include <osg/Shape>

#include <osg/ShapeDrawable>

#include <osg/PositionAttitudeTransform>

#include <osg/Texture2D>

#include <osg/Timer>

#include <osgDB/ReadFile>

#include <osgProducer/Viewer>

#include <osgGA/GUIEventHandler>

// ODE!

#include <ode/ode.h>

For ODE simulation, only one include is required. The remain includes
are from OSG. Variables declaration and definition have been omitted to
make code cleaner. Now, you can to enjoy the ODE code, exhaustively
commented code, in the main function. It gives us an overview about a
simple ODE simulation.

odedemo.cpp

1 // 1. Create a dynamics world.

2 World = dWorldCreate();

3 dWorldSetGravity (World, 0.0, 0.0, -9.8);

4 dWorldSetERP (World, ERP);

5

6 // 2. Create bodies in the dynamics world.

7 Box = dBodyCreate (World);

28

8 for (int i = 0; i < NUM_SEGMENTS; ++i)

9 Snake[i] = dBodyCreate (World);

10

11 // 3. Set the state (position etc) of all bodies.

12 dMass mass;

13

14 dBodySetPosition (Box, 0.0, 0.0, BOX_SIDE/2.0);

15 dMassSetBoxTotal (&mass, BOX_MASS, BOX_SIDE, BOX_SIDE, BOX_SIDE);

16 dBodySetMass (Box, &mass);

17

18 dMassSetSphereTotal (&mass, SPHERE_MASS, SNAKE_RADIUS);

19 for (int i = 0; i < NUM_SEGMENTS; ++i)

20 {

21 dBodySetPosition (Snake[i], SmallRand(), SmallRand(),

22 5.0 + 2*SNAKE_RADIUS * i);

23 dBodySetMass (Snake[i], &mass);

24 }

25

26 // 4. Create joints in the dynamics world.

27 for (int i = 0; i < NUM_SEGMENTS - 1; ++i)

28 Joints[i] = dJointCreateUniversal (World, 0); // 0 is "joint group"

29

30 // 5. Attach the joints to the bodies.

31 for (int i = 0; i < NUM_SEGMENTS - 1; ++i)

32 dJointAttach (Joints[i], Snake[i], Snake[i+1]);

33

34 // 6. Set the parameters of all joints.

35 for (int i = 0; i < NUM_SEGMENTS - 1; ++i)

36 {

37 dJointSetUniversalAnchor (Joints[i], 0.0, 0.0, 5.0 + SNAKE_RADIUS + 2*i*SNAKE_RADIUS);

38 dJointSetUniversalAxis1 (Joints[i], 0.0, 1.0, 0.0);

39 dJointSetUniversalAxis2 (Joints[i], 1.0, 0.0, 0.0);

40 dJointSetUniversalParam (Joints[i], dParamCFM, CFM);

41 }

42

43 // 7. Create a collision world and collision geometry objects, as necessary.

44 Space = dSimpleSpaceCreate(0);

45

46 BoxGeom = dCreateBox (Space, 2.0, 2.0, 2.0);

47 dGeomSetPosition (BoxGeom, 0.0, 0.0, 1.0);

48 dGeomSetBody (BoxGeom, Box);

49

50 for (int i = 0; i < NUM_SEGMENTS; ++i)

51 {

52 SnakeGeom[i] = dCreateSphere (Space, SNAKE_RADIUS);

53 dGeomSetPosition (SnakeGeom[i], 0.0, 0.0, 5.0 + 1.2*i);

29

54 dGeomSetBody (SnakeGeom[i], Snake[i]);

55 }

56

57 GroundGeom = dCreatePlane (Space, 0.0, 0.0, 1.0, 0.0);

58

59 // 8. Create a joint group to hold the contact joints.

60 ContactGroup = dJointGroupCreate(0); // param unused; kept for backward compatibility

61

62 // Create a Producer-based viewer

63 osg::ref_ptr<ODEController> eh (osg::ref_ptr<ODEController>(new ODEController));

64 osgProducer::Viewer viewer;

65 viewer.setUpViewer (osgProducer::Viewer::STANDARD_SETTINGS);

66

67 viewer.getEventHandlerList().push_front (eh.get());

68

69 CreateOSGWorld();

70 viewer.setSceneData (SGRoot.get());

71 UpdateOSGWorld();

72

73 osg::Timer_t prevTime = osg::Timer::instance()->tick();

74 viewer.realize();

75

76 // 9. Loop:

77 while (!viewer.done())

78 {

79 viewer.sync();

80 viewer.update();

81 viewer.frame();

82

83 const double MAX_STEP = 0.01;

84 const osg::Timer_t now = osg::Timer::instance()->tick();

85 double deltaSecs = osg::Timer::instance()->delta_s (prevTime, now);

86 prevTime = now;

87

88 while (deltaSecs > 0.0)

89 {

90 // 9.1. Apply forces to the bodies as necessary.

91 // (forces are valid for one time step only, so this must be done inside

92 // this inner loop that keeps the time steps short)

93 if (eh->isForceOn())

94 dBodyAddForce (Box, 0.0, 0.0, 800.0);

95

96 // 9.2. Adjust the joint parameters as necessary.

97 // (nothing necessary here)

98

99 // 9.3. Call collision detection.

30

100 dSpaceCollide (Space, 0, NearCallback);

101

102 // 9.4. Create a contact joint for every collision point, and put it in

103 // the contact joint group.

104 // See ’NearCallback()’, please.

105

106 // 9.5. Take a simulation step

107 const double step = std::min (MAX_STEP, deltaSecs);

108 deltaSecs -= MAX_STEP;

109

110 dWorldStep (World, step);

111 // Alternatively, you may wish to try this:

112 // dWorldQuickStep (World, step);

113

114 // 9.6. Remove all joints in the contact joint group.

115 dJointGroupEmpty (ContactGroup);

116 }

117

118 UpdateOSGWorld();

119 }

120

121 // 10. Destroy the dynamics and collision worlds.

122 dSpaceDestroy (Space);

123 dWorldDestroy (World);

124

125 viewer.sync();

126

You have observed that bodies do not interact only because of collision.
They can also interact because they are “attached” together, through a
joint. ODE defines different types of joints. Here, we show an example
with independent objects, so only contact joints are described9. Why are
joints important? Because the space manages the collision detection based
on the given geoms. However, once collisions are detected, the dynamics
must account for them. It turns out that collision/contact interaction can
be described as temporary joints that exists only during the time of the
contact. compiling and ODE Demo.cpp, we can appreciate, a simple, but
interesting demostration about ODE capabilities, display through OSG. So,
let’s go! give one looked at the source code.

9For detailed information, see ODE Manual
http://www.ode.org/ode-latest-userguide.html.

31

5.3 Beyond the Straight Line

Cal3D library has been chosen to produce the virtual characters animation.
However, it does not deal with the movement of the characters in the virtual
world, but only with body animation. This task can be realized, for exemple,
by OpenSteer10. It is the natural choice for steering behaviors.

An intermediate layer between Cal3D and steering has been required
to syncronizeboth. This layer controls automatically the animation of one
character (movement of legs and arms) due to the trajectories processed in
OpenSteer library at each frame. To each animation keyframe, the displace-
ment of the character from previous position is computed and then the body
animation is updated. Then, all simulation is shown by cooperative work
among OSG, Cal3D and OpenSteer. For more sophisticated simulation, this
synergy can take account simulation on relief terrain. So, GDAL11 makes
easier the visualization of animated human and geometric data of city relief.

6 Past, Present and Future? Questions For God

This text is and adaptation of “Short Introduction to the Basic Principles
of the Open Scene Graph” written by Leandro Motta Barros at Aug, 17,
2005. The original can be downloaded in OSG - site.

We intend to produce a Portuguese version of this document, and update
current version according to the OSG evolution and toolkit updates, too.
Visit us,

http://www.stackedboxes.org

http://www.omni3.org/osg

All source codes (and updates) are stored there. Go! go! You can get
and use them!

About hot topics like NodeKits, Visitors and so on, you are working to
add in a new version of this document. Visit our site and follow pieces of
news.

10http://opensteer.sourceforge.net
11http://www.gdal.org

32

Please, explore this document and find errors. We hope you can help us
to produce a high quality document. Contributions are welcome. Please,
send all to luiz<at>omni3.org and lmb<at>stackedboxes.org.

All these libraries, mainly OSG, have a large set of examples. You can
explore them to develop professional computer graphics applications and
products. Besides, Cal3D and ODE have complete manuals, while Paul
Martz has delivered a OSG Quick Start Guide.

A Rough equivalences between OpenGL and OSG

I think it is a good idea to have something like this. As can be easily seen,
there is no real content in this table yet, just some examples.

OpenGL OSG

glTranslate() osg::PositionAttitudeTransform

glRotate() osg::PositionAttitudeTransform

glColor() osg::Material

33

