XII Symposium on Virtual and Augmented Reality

Natal, RN, Brazil - May 2010

Supporting the design of multimodal interactions:
a case study in a 3D sculpture application

Daniela G. Trevisan
Computing Institute - UFF
Niteroi, RJ, Brazil
daniela@ic.uff.br

Carla M. D. S. Freitas
Informatics Institute - UFRGS
Porto Alegre, RS, Bazil
carla@inf.ufrgs.br

Abstract

This paper explores the idea of developing a hybrid user
interface that was conceived from splitting a previous single
desktop application for 3D volume sculpture into three dif-
ferent interactive environments (Wimp, Augmented Reality
and Head-Mounted Immersive Virtual Reality). To achieve
such goal we illustrated how the Openlnterface platform
can facilitate the development process in order to allow sev-
eral modalities for user interaction within and along the
environments. Components for user interaction such as
speech recognition and 3D commands were inserted into
the multimodal platform as well as components for handle
fusion of modalities.

1. Introduction

In one of the earliest multimodal concept demonstra-
tions, Bolt [2] had users sit in front of a projection of “Data-
land”. Using the ‘“Put That There” interface, users could
use speech and pointing on an armrest-mounted touchpad
to create and move objects on a 2-D large-screen display.
Semantic processing was based on the users spoken input,
and the meaning of the deictic “there” was resolved by pro-
cessing the x,y coordinate indicated by the cursor at the time
“there” was uttered. Since Bolt’s early prototype, consider-
able strides have been made in developing a wide variety of
different types of multimodal systems [19] and [6].

Although several systems for multimodal interfaces are
being built, their development is still a difficult task. The
tools dedicated to multimodal interaction are currently few
and limited or focused on a specific technical problem

Felipe Carvalho
Tecgraf Lab. - PUC-Rio
Rio de Janeiro, RJ, Brazil
kamel @tecgraf.puc-rio.br

Alberto Raposo
Department of Informatics - PUC-Rio
Rio de Janeiro, RJ, Brazil
abraposo@inf.puc-rio.br

Luciana P. Nedel
Informatics Institute - UFRGS
Porto Alegre, RS, Bazil
nedel @inf.ufrgs.br

such as the fusion mechanism [7], and mutual disam-
biguation [21], or they are devoted for specific interaction
paradigms. For example, the Toolkit GT2k of Georgia Tech,
is designed to support the recognition of gestures [16] while
the Phidgets tool [15] is focusing on tangible interfaces.

During the design phase of multimodal applications, the
designer can specify the modality or modalities of inter-
action that can be applied to a given task as well as how
these modalities will be combined or used. In this con-
text we define a multimodal application as an application
that includes multimodal data processing and/or offers mul-
timodal input/output interaction to its users.

In order to support such functionalities Openlnterface
can be viewed as a central tool for an iterative user-centered
design process of multimodal interactive systems. It con-
sists of a component-based architecture, which allows the
integration of heterogeneous native interaction components
as well as the connection between them to develop new mul-
timodal applications.

In this paper we give an overview of this platform and
demonstrate how it can be used to implement and support
multimodal interaction in an hybrid user interface.

The remainder of the paper is structured as follows. In
Section 2 we review relevant work in the area of multimodal
software platforms and we highlight some advantages and
features of using Openlnterface platform. Aspects involved
in the design of multimodal systems are described in Sec-
tion 3. An overview of this software platform is presented in
Section 4, while the hybrid user interface for the 3D med-
ical application as well as its interaction components are
detailed in Section 5. Finally, Section 6 presents final con-
siderations and discusses future directions of the work.

153

XII Symposium on Virtual and Augmented Reality

2 Related work on multimodal software plat-
forms

There are several toolkits for investigating multimodal
application design. A selection of well-known seminal plat-
forms is listed here, and we highlight shortcomings that
Openlnterface aims to overcome.

ICON [9] is a java input toolkit that allows interactive
applications to achieve a high level of input adaptability.
It natively supports several input devices. Devices can be
added to the toolkit using JNI, the low-level Java Native
Interface allowing integration with programs written in C.

ICARE [3] is a component-based platform for building
multimodal applications. This solution defines a new com-
ponent model based on Java Beans, and requires all compo-
nents to be written in java. The platform is not easily exten-
sible, produces non-reusable components, and also requires
additional programming effort for integrating new devices
or features.

CrossWeaver [26] is a user interface design tool for plan-
ning multimodal applications. It allows the designer to in-
formally prototype multimodal user interfaces. This pro-
totyping tool supports a limited number of input and output
modalities and is not suitable for integrating additional soft-
ware components.

Max/MSP ! is a graphical environment for music, audio,
and multimedia; Pure Data [22] is its open-source coun-
terpart. Both provide a large number of design tools, are
extensible, and have a large community of users including
performers, composers, artists, teachers, and students. The
extension mechanisms, however, require low level program-
ming in C, and it is not possible to embed the platforms in
external applications.

The goal of Exemplar [11] is to enable users to focus
on design thinking (how the interaction should work) rather
than algorithm tinkering (how the sensor signal processing
works). Exemplar frames the design of sensor-based inter-
actions as the activity of performing the actions that the sen-
sor should recognize. This work provides an Eclipse based
authoring environment which offers direct manipulation of
live sensor data.

Most of the solutions listed above require commitment
to a specific technology (e.g. programming language, de-
vice toolkit), or support a limited number of interaction
modalities such as voice, pen, text, and mouse, and are de-
signed for specific interaction paradigms. Moreover none
provides a reusable framework for experimenting with vari-
ous type of software component without the burden of com-
plete re-implementation to match a chosen runtime technol-
ogy. Openlnterface ? differs from the above as it focuses on

'Max/MSP, http://www.cycling74.com
2www.openinterface.org

Natal, RN, Brazil - May 2010

providing an interaction-independent, device and technol-
ogy independent flexible solution for the fast prototyping of
multimodal applications through the facilitation and reuse
of existing software and technologies. Openlnterface also
looks into the problem of how to support different stake-
holders to achieve better collaboration while designing in-
teractive multimodal systems in an ongoing complex design
process. The platform offers two base tools, Openlnter-
face Kernel as a generic runtime platform for integrating
heterogeneous code (e.g. device drivers, applications, algo-
rithms, etc.) by means of non-intrusive techniques and with
minimal programming effort, while achieving exploitable
runtime performances (e.g. low latency, low memory over-
head). SKEMMI is the provided design front-end. It sup-
ports a multi-level interaction design and allows composi-
tion and modification of running applications through tech-
niques such as design-by-demonstration or direct manipula-
tion. These are the reasons why we have chosen to develop
our multimodal application using this platform.

3 Fundamental concepts of multimodal sys-
tems

In this section we briefly introduce some relevant aspects
involved in the design and development of multimodal sys-
tems.

Multimodal systems process two or more combined user
input modes such as speech, pen, touch, manual gestures,
gaze, and head and body movements in a coordinated man-
ner with multimedia system output [20].

A large body of data reported in the literature allows af-
firming that multimodal interfaces reach higher levels of
user preference when interacting with simulated or real
computer systems. Users have a strong preference to inter-
act multimodally, rather than unimodally, in a wide variety
of different application domains, although this preference is
most pronounced in spatial domains. For example, 95% to
100% of users preferred to interact multimodally when they
were free to use either speech or pen input in a map-based
spatial domain [21].

While recent literature has focused mainly on either
speech and pen input or speech and lip movement inter-
pretation, recognition of other modalities also is maturing
and beginning to be integrated into new kinds of multimodal
systems. In particular, there is growing interest in designing
multimodal interfaces that incorporate vision-based tech-
nologies, such as interpretation of gaze, facial expressions,
and manual gesturing [17, 28].

Although each modality can be used independently
within a multimodal system, the availability of several
modalities in a system naturally leads to the issue of their
combined usage. An interaction modality can be defined as
the composition of a language and a device, for instance,

154

XII Symposium on Virtual and Augmented Reality

blowing + microphone and gesturing in the physical space
+ webcam. Mechanisms for modalities fusion inform the
manner these modalities have to be combined to provide
useful information for the application.

The combined usage of multiple modalities opens a
vastly augmented world of possibilities in multimodal user
interface design. In this sense the CARE (Complementarity,
Assignment, Redundancy, Equivalence) design properties
[7] has been proposed to adrress such issue. Assignment
property is represented by a single link between two compo-
nents. Indeed a component A linked to a single component
B implies that A is assigned to B. Redundancy property is
represented by two or more modalities that can be used to
perform the same user’s task although the expression power
of these modalities are not the same. On the other hand, the
Equivalence property indicates that the modalities involved
in the user interaction have the same expression power. It
is important to understand “expression power” as the cog-
nitive, cultural and learning level required by a specific lan-
guage, while the Complementarity property is applied when
the user’s task requires two or more parameters as inputs.
For instance in the MATIS (Multimodal Airline Travel In-
formation Systems) system by combining synergy, the user
can also combine speech and gesture as in the vocal com-
mand “show me the USAir flights from Boston to this city”
along with the selection of “Denver” (destination city) with
the mouse [19].

In our application development we consider the assign-
ment, complementarity and redundancy properties as mech-
anisms to handle fusion of modalities (See Section 5.1).

4 Multimodal platform description

In this section we describe some technical aspects of the
Openlnterface multimodal platform which were necessary
to acquire for the development of our case study application.

In Openlnterface, each component interface is described
and registered into the repository using the XML-based
Component Interface Description Language (CIDL). The
C++ kernel then automatically generates proxies to perform
the actual integration. Using a graphical front-end or the
kernel API (allows embedding the platform within the final
application) users can configure components and compose
complex execution pipelines for implementing multimodal
applications.

4.1 Component description

An Openlnterface component consists of a computing
unit, an algorithm, a bundled library, etc. Then, to be in-
tegrated into Openlnterface, a component has:

e an id: the id is an unique name for identifying a com-
ponent among all others Openlnterface components.

Natal, RN, Brazil - May 2010

The structure of the id follow the hierarchical struc-
ture;

e a name, a simple human readable word identifying
(non uniquely) the component;

e a language, the programming language used to imple-
ment the component;

e a container, the description of the delivery format. Ba-
sically, it aims at defining the way by which a com-
ponent will be made available and those ways include
jar file (for Java), shared object library (for C/C++),
archive (C/C++), directory (Matlab, Java);

e a description of the I/O pins: this is where one de-
scribes the interfaces of a component. Basically it
describes the logical units and their input and output
functions;

An IO element encompasses the declaration of a com-
ponent’s interface. It contains declarations of a component
different facets along with their respective sink or source
pin. A facet is typically a logical unit inside a component
and a pin is a function/method of a given unit.

A sink pin represents a way for a component to receive
data. Conversely a source pin is the way for a component
to send data. Both sink and source pins have mandatory
properties:

e Id, each pin has a unique id inside a given facet;

o Interface, namely it is a description of a function’s sig-
nature. Currently, there are some restrictions on the
kind of functions that can be described; the types of
the functions parameters are limited to primitives types
such as (boolean, byte, char, 8 int, long, float, dou-
ble, string) and up to 3-Dimensional array of primitive

types.

The Source pin has an additional property: Callback. A
Callback is the way for a component to call a function it
doesn’t know about at implementation time. For instance, a
mouse driver component would expose a Callback for no-
tifying about the current mouse position and buttons states.
A Callback setter will then be called to register the external
function. So instead of polling the mouse component for
its state, the user will be notified by the registered function
only when the state has changed.

For a visual representation of the component and its pins
see Figure 2, botton view.

In order to assist the creation of an component descrip-
tion the Component Builder plugin provides the following
features: the CIDL generation from source code, and the
component packaging and deployment. The user opens the
desired source file (which represents the interface of the

155

XII Symposium on Virtual and Augmented Reality

component) within the editor and can interactively modify
the generated corresponding XML description. The user
can directly edit code within the editor by either modifying
non-compliant interface or removing undesired functions.
Currently only C/C++ and Java source code parsing are sup-
ported.

4.2 Pipe description

In order to build a running application, Openlnterface
uses the concept of Pipeline as an interconnection and con-
figuration of components as illustrated in Figure 1. It al-
lows control over the components life-cycle and execution
site (remote, local), and provides low level (threshold, fil-
ter, etc.) and high level (multicast, synchronization, etc.)
data flow control for building up a complex systems. A
pipeline also supports dynamic reconfiguration of connec-
tions at runtime.

A pipeline thus defines and configures connections be-
tween components using the PDCL (Pipeline Description
and Configuration Language see [13] for more details).
It provides simple embedded dataflow controls, such as di-
rect function calls and asynchronous calls, as well as sim-
ple mechanisms for extending the pipelines expressiveness
in order to simplify intuitive interaction implementation.

The pipeline also allows isolating component in separate
processes or distributing the execution of an assembly over
a set of computers running an instance of Openlnterface
Kernel. The distribution can either be performed seamlessly
using the PDCL syntax or with connectors implementing
well known protocol.

In order to provide support to this stage Figure 2 shows
a typical interactive session in the design-time visual editor.
While the left pane of the visual editor contains a hierarchi-
cal view of the project being built, the right pane contains
in different tabs respectively the integrated components, the
adapters, and the annotations elements. Using a drag and
drop technique, users can initiate the conceptual assembly
of the desired components (Figure 2, top) and further re-
fine the pipeline to actually implement the desired behavior
(Figure 2, middle).

4.3 Graphical Editor

This section describes the Eclipse-based end-user inter-
face to the OpenlInterface Kernel. SKEMMI editor provides
dataflow editing features while also trying to put more em-
phasis on informal prototyping through machine learning
components and on the collaboration of different actorsde-
signers and programmers within the complex iterative de-
sign process [14].

To help users abstract from implementation details or
dive into them at their best convenience, SKEMMI editor

Natal, RN, Brazil - May 2010

i GloveSDT_Translationanguage

GloveSDT_Component

GloveSDT_ZoomLanguage

my_viewer

NavigationToy

[componere] e J sk]tk

Figure 1. Openinterface pipeline.

provides the ability to seamlessly navigate through three
design-levels by the use of a three-level scale. The com-
mon representation of components is to depict them, their
ports, and each linking among input and output ports. How-
ever, this information may be superfluous in a first over-
all design sketch. For example, when initially designing
interactions, less emphasis is put on ports and types. Ba-
sically required components are elicited, logical links are
drawn between them, notes and documentations are added
to describe the overall concept. To support this “brainstorm-
ing” design phase the graphical editor provides a “work-
flow” level prospect that shows only components, concep-
tual links among them, and annotations as illustrated by Fig-
ure 2 top view. This level can be further refined to an actual
implementation level (see Figure 2 center view). The same
workflow is augmented with technical details such as ports,
data types, and etc. Conceptual links can be instantiated to
apply the mapping between design concept, notes, require-
ment and available components is made at this stage. The
third level gets (visually) rid of all the interconnections and
focuses on a single component design (see Figure 2 botton
view). It also allows redefining a component interface at
this stage if it does not suit the designer requirements.

S Demonstration example

Before to start describing our system we introduce herein
some previous works that have been done on the context of
Hybrid User Interfaces. The concept of Hybrid User In-
terfaces is not new. Two previous works in this area de-
serve attention: the first work, from Rekimoto [24], has
HUI following the ideas of ubiquitous computing using dif-
ferent devices. Some intuitive operations (pick-and-drop
and hyperdragging) were created in order to transfer data
among the devices. The second work is a similar project
called EMMIE [5], which used different displays and de-
vices supporting co-located and remote collaboration. The
proposed system used augmented reality to place informa-
tion in the space but also provided some private visualiza-
tion of information. Another interesting work is the Mag-

156

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

icMeeting [23], that created a collaborative environment us-
ing augmented reality based on tangible interfaces. By at-
taching 3D objects and WIMP interfaces to those tangibles
interfaces, the system provided interaction with 3D and 2D
data. Nakashima and colleagues [18] presented a system
using WIMP interfaces and 3D objects. WIMP interfaces
were projected on a table and 3D objects were displayed on
an illusion hole. The system supported collaboration among
some users. The Studierstube [25] also presented a collab-
orative system using augmented reality for co-located and
remote users. Benko and colleagues [1] developed an ap-
plication with cross-dimensional gestural interaction tech-
niques, enabling interactions using 2D (via desktop) and
3D (via AR) visualizations, as well as the transference of
objects between these kinds of visualization.

In this context, recent studies have demonstrated that in
certain situations a mix of 3D and 2D interaction is pre-
ferred in relation to exclusive use of one or the other [8].
Keeping many interaction environments in the same work-
place would be of great advantage for tasks composed by
many different types of sub-tasks.

With this work we demonstrate how to transform an al-
ready implemented single desktop 3D applications into 3
complementaries interactive environments with support to
multimodal user’s interactions.

S - LN

5.1 System overview

We start by describing our interaction scenario, which is
providing a set of tools for volume sculpting. These tools
were described by [12] and used three-dimensional geome-
tries associated to the virtual hand metaphor [4]. The vir-
tual hand is represented as different cursors with formats
that reproduce in three dimensions the sculpting tools the
user can apply to the 3D volume. The sculpting tools are
3D Rubber (which allows erasing parts of the volume), 3D
Digger (that behaves as a carving tool) and 3D Clipper (rep-
resented as a cutting plane).

The system showed in Figure 3 was initially developed to
be used in a desktop using 2D and 3D mouse-based interac-
tions. In order to address the design issue of keeping dimen-
sional congruence [8], which says the interaction technique
used to perform a task must match the spatial demands of

o of]

Figure 2. Three-level view of the 3D Hybrid that task, we propose here to split user’s interactions along
sculpture within SKEMMI. Top: workflow; a hybrid user interface.
Middle: Dataflow; Bottom: component. In this work we are focusing only on the task provided

by the 3D Digger tool as shown in Figure 4. This tool elim-
inates voxels in the interior of a virtual sphere, the region
being defined by a 3D point P and a ray r specified by the
user. The selection of a voxel for removal is done calculat-
ing the Euclidean 3D distance d of its center to P. The voxel
isremoved if d < 7.

In order to provide user interaction within and through

157

XII Symposium on Virtual and Augmented Reality

Figure 3. First version of the viewer with 2D
and 3D visualizations of an interactive sculpt-
ing session where the volume of interest is a
torso dataset.

Figure 4. 3D Digger tool: eliminating voxels
from the volume.

the three environments (WIMP, AR - augmented reality and
HIVR - Head-Mounted Immersive VR), we have designed
interactions for each environment as well as transitions be-
tween them.

Aiming to provided support for that we developed and
integrated into the Openlnterface platform eight compo-
nents: (1) the viewer itself, five interaction components -
(2) image capture, (3) 3D tracking movements to support
volume and tool manipulation, (4) noise detection, (5) user
head tracking, (6) speech recognition and two components
for fusion (7) complementarity fusion and (8) redundancy
fusion. All these components, together with a mouse in-
teraction component were integrated into the Openlnterface
platform allowing the rapid prototyping of our hybrid envi-
ronment with multimodal user interactions.

The initial system overview that was idealized is pre-
sented in Figure 5 and it could be implemented in a very
similar way by the SKEMMI Graphical Editor as is illus-
trating Figure 2.

Details about each component are given in the next sub-
sections.

Natal, RN, Brazil - May 2010

5.2 Hybrid viewer

As mentioned before the idea of the hybrid viewer sys-
tem consists on splitting the previous single desktop viewer
(see Figure 3) to allow several modalities for user inter-
action within and through the three environments (WIMP,
AR and HIVR Head-Mounted Immersive VR). In this way,
the hybrid viewer component consists of the final user in-
terface, where the combined or assigned interaction events
from other components are continuously arriving.

Figure 5 shows an overview of the required interaction
devices and components of the hybrid user interface while
Figure 6 shows the interactions to perform transitions along
the environments. All components involved in such interac-
tions are described in the next sections.

When the application is launched by the Openlnterface
execution pipeline all interaction components as well as the
hybrid viewer are launched simultaneously. The hybrid
viewer starts the WIMP user interface with mouse-based
speech interaction ready for use. In order to dispatch the
interaction event to the corresponding interactive environ-
ment we developed a dialog control. It is always checking
the state of the speech port, and when a speech event arrives
in the hybrid viewer the related environment is activated as
well as all the user interaction modalities that are available
for that specific environment. The user’s interaction modal-
ities that will be available in each environment were defined
previously, during design time, by specifying the execution
pipeline of application as follows.

5.3 Fusion components

Because the CARE properties (see Section 3) have been
shown to be useful concepts for the design and evaluation
of multimodal interaction, we have decided to reuse those
concepts to make them explicit during the application de-
velopment.

While Equivalence and Assignment express the avail-
ability and respective absence of choice between multiple
modalities for performing a given task, Complementarity
and Redundancy describe relationships between devices,
languages or more generally between modalities for per-
forming a given task.

These composition components describe the fusion
mechanism of data provided by 2 to n interactions compo-
nents. The criteria for triggering fusion are twofold: the
complementarity/redundancy of data, and time. For the
management of time, a temporal window is associated with
each piece of data handled by a composition component.
A temporal window defines the temporal proximity of two
pieces of data (+At) and is used to trigger fusion. Two
pieces of data d1 and d2 are combined if their time-stamps,
t1 respectively t2, are temporally close: Close (t1, t2) is sat-

158

XII Symposium on Virtual and Augmented Reality

Natal, RN, Brazil - May 2010

Flock of Mouse

Birds Driver

=

Hybrid Viewer

St

Speech Recognition - s

Image

Redun H

dance
Fusion

Capture _gc.,

Noise
Detector

Gesture Detector

m Marker 1 position

Compleme

Fusion

ntarity

m Marker 2 position

Figure 5. Initial conception of the application scenario overview.

isfied if: t2 € [t1 — At,t1 + At] For the management of
data the own activate environment will be used to validate
the data available for that user’s interaction.

In the following subsections we illustrate how such
mechanisms of fusion were implemented in our application.

5.4 Image capture

The Image Capture component used within OpenlInter-
face uses the ARToolkit 3 library to capture the webcam
image. After that, this component sends the captured image
to the 3D position detector component to be processed, and
to the Hybrid viewer component to be visualized. However,
the image visualization is activated only when the speech
event “AR” is detected by the dialog control in the hybrid
viewer component.

5.5 3D position detector

3D Position Detector component uses the ARToolkit li-
brary to capture the 3D markers positions in the physical
space. We are using a webcam while the user is moving
two printed markers in the physical space to interact with

3http://sourceforge.net/projects/artoolkit

the augmented viewer. One detected marker is used to ma-
nipulate the volume on the user hand and the other one is
used to interact with the volume using the tracked tool (see
Figure 7).

Figure 7. Bimanual and multimodal user in-
teraction in the AR environment.

159

XII Symposium on Virtual and Augmented Reality

(Position

HAR”

HVR”

“‘WIMP”

Natal, RN, Brazil - May 2010

“WIMP?

“VRH

Figure 6. User’s interaction along the three environments: WIMP, HIVR and AR.

5.6 Noise detector

The NoiseDetector component provides a single com-
mand that can be activated using a microphone. The tech-
nique is simple and does not require much processing. The
component takes small sound buffers from the microphone
and when it detects a sufficient noise, it triggers a callback
function passing true (otherwise, it passes false). In this
implementation, it passes true when more than 40% of the
samples (absolute value) is greater than 0.8 (their maximum
value is 1.0). This component was implemented in C++
using the Portable Real-Time Audio Library # to capture
sound and then to process the signal.

The best way to generate such noise is by blowing di-
rectly into the microphone. Each time the noise is detected
a single event is sent to the complementary component to be
fusioned with the 3D location data sent by the 3D position
detector component. At this point we are combining two
complementaries signals (e.g. noise + 3D position) to per-
form a single interaction in the hybrid viewer which is erase
voxels. In the case of signals detection failure or if the time
stamp between the two detected events is not satisfying the
Close function (previously described in Section 5.3) none

“http://www.portaudio.com/

event is sent to the Hybrid viewer component and then none
action is performed.

5.7 User head tracking

Once the user is inside the HIVR environment, the
mouse-based interactions become available for use, but, if
they were not being used, the system will enable the head-
tracking, and the virtual camera will follow the user head
movement (e.g redundancy mechanism of fusion). We have
implemented this technique using a Flock of Birds® motion
tracker as a component into the OpenlInterface platform.
This component is always sending the user head orienta-
tion to the hybrid viewer, however it is activated only when
the speech event “VR” is interpreted by the dialog control.

5.8 Speech recognition

To implement vocal commands to control transitions be-
tween the environments as illustrated in Figure 6 we have
used Sphinx-4 ©. Sphinx is a state-of-the-art speech recog-
nition system written entirely in the Java programming lan-

Shttp://www.ascension-tech.com/
Shttp://sourceforge.net/projects/cmusphinx

160

XII Symposium on Virtual and Augmented Reality

guage and it is now an interaction component available in
the Openlnterface platform.

Sphinx uses speech recognizers based on statistical Hid-
den Markov Models and the Java Speech API Grammar
Format (JSGF) to perform speech recognition using a BNF-
style grammar. Our grammar to allow user transitions from
one environment to another is as follows:

#JSGF V1.0;
grammar navigation;
public <navigation> =|VR|AR|Wimp;

Commands recognition results provided by this compo-
nent seems to be satisfactory in terms of user interaction
performance. In a very preliminary evaluation approxi-
mately 9 in 10 commands were successfully recognized af-
ter a short time spent for the user training model. These re-
sults were obtained using a head set microphone and none
interference with the noise detector component was ob-
served.

6 Final Considerations and Future Works

In this work we have demonstrated how systems with
multimodal interactions can be quickly designed and im-
plemented using the multimodal software platform Open-
Interface. We have used the such multimodal platform to
assembly several developed interaction components in a hy-
brid environment using as case study application a volume
sculpting tool.

The main advantages in using such platform can be sum-
marized as follows:

o Integrate new modalities, devices, and functional cores
(i.e. components) into the platform. The software can
be provided in any supported programming languages
(C/C++, Java, Matlab and .NET; extensions can be eas-
ily added), and semi-automatic tools are provided to
ease that process.

e Use the graphical interface to dynamically or stati-
cally combine components, and generate a running ap-
plication. External applications can also control the
pipeline by using the provided multi-language API.

It is worth noting that no significant events recognition
delay was observed after integration of the several compo-
nents into the multimodal platform and all components used
in this approach are open source and can be freely down-
loaded from Internet. With that we hope to motivate the
development of several multimodal applications in many
fields of application.

As a result of this implementation some design issues
that hybrid environments with support to interaction of tran-
sition should be able to address were identified. They are

Natal, RN, Brazil - May 2010

dimensional task demand [8] and task continuity [10] and
[27]. Obviously, there is no way to say definitely what the
best interaction technique or set of interaction technique
best suits an entire category of interaction tasks. In this
sense our purpose in future works is to attempt to identify
tendencies and build a body of reusable knowledge leading
toward better overall interface design. For that, we intend to
develop a protocol for usability evaluation concerning to the
multimodal user interaction, in order to verify these design
issues while the user is performing hybrid tasks and com-
pare the results with the previous one [12] obtained from
user tests in a single desktop environment.

On the other hand, we have also observed that the con-
cept of continuous interaction space became more evident in
the context of hybrid user interfaces following the ideas of
Ubiquitous computing, which argues that interaction envi-
ronments should not reside only in the user desktop, but also
in other devices and in the surrounding world. In this direc-
tion, in next versions of our system we intend to provide
dynamic components for interaction according to different
contexts of use (e.g. user, environment, task or platform).

7 Aknowledgments

This work was developed in the scope of the projects
CNPg/INRIA EDGE and CNPq/FNRS MIDAS. Special
thanks to Lionel Lawson from Universite catolique de Lou-
vain, Belgium, for the Openlnterface support.

References

[1] H. Benko, E. Ishak, and S. Feiner. Cross-dimensional ges-
tural interaction techniques for hybrid immersive environ-
ments. In Virtual Reality 2005, pages 209-216. IEEE, 2005.

[2] R. A. Bolt. Put-that-there: Voice and gesture at the graphics
interface. Computer Graphics, 14(3):263-270, 1980.

[3] J. Bouchet and L. Nigay. Icare: A component-based ap-
proach for the design and development of multimodal in-
terfaces. In Proc. of 11th International Conference on
Human-Computer Interaction HCI International, Vienna,
2004. Lawrence Erlbaum Associates.

[4] D.Bowman, E. Kruijff, J. LaViola, and I. Poupyrev. 3D User
Interfaces - Theory and Practice. Addison-Wesley, 2005.

[5] A. Butz, T. Hollerer, and et al. Enveloping users and com-
puters in a collaborative 3d augmented reality. In /WAR 99,
pages 3544, 1999.

[6] P.R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman,
I. Smith, L. Chen, and J. Clow. Quickset:multimodal in-
teraction for distributed applications. In Proceedings of the
Fifth ACM International Multimedia Conference, pages 31—
40, New York, 1997. ACM.

[7] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and
R. M. Young. Four easy pieces for assessing the usability of
multimodal interaction: The CARE properties. In INTER-
ACT, pages 115-120, 1995.

161

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(7]

[18]

[19]

(20]

(21]

XII Symposium on Virtual and Augmented Reality

R. Darken and R. Durost. Mixed-dimension interaction
in virtual environments. In VRST 05, pages 38—45. ACM,
2005.

P. Dragicevic and J.-D. Fekete. Support for input adapt-
ability in the icon toolkit. In ICMI '04: Proceedings of
the 6th international conference on Multimodal interfaces,
pages 212-219, New York, NY, USA, 2004. ACM.

E. Dubois, L. Nigay, and J. Troccaz. Assessing continuity
and compatibility in augmented reality systems. Journal of
Universal Access in the Information Society, 1(4):263-273,
2002.

B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer.
Authoring sensor-based interactions by demonstration with
direct manipulation and pattern recognition. In CHI ’07:
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 145-154, New York, NY, USA,
2007. ACM.

R. Huff, C. Dietrich, L. Nedel, C. Freitas, and S. Olabar-
riaga. Erasing, digging and clipping in volumetric datasets
with one or two hands. In ACM International Conference on
Virtual Reality Continuum and Its Applications, pages 271—
278. ACM, 2006.

J.-Y. Lawson. Openinterface description lan-
guages specification. Technical report, available at
http://www.openinterface.org/platform/documentation,
2006.

J.-Y. L. Lawson, A.-A. Al-Akkad, J. Vanderdonckt, and
B. Macq. An open source workbench for prototyping mul-
timodal interactions based on off-the-shelf heterogeneous
components. In EICS '09: Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive computing
systems, pages 245-254, New York, NY, USA, 2009. ACM.
S. MGreenberg and C. Fitchett. Easy development of phys-
ical interfaces throught physical widgets. In Proc. of the
UIST 2001 Annual ACM Symposium on User Interface Soft-
ware and Technology. ACM, 2001.

S. MGreenberg and C. Fitchett. Georgia tech gesture toolkit:
supporting experiments in gesture recognition. In Proc.
of the International conference on multimodal interfaces -
ICMI’03., page 8592. ACM, 2003.

C. Morimoto, D. Koons, A. Amir, M. Flickner, and S. Zhai.
Keeping an eye for HCL. In SIBGRAPI’99, XII Brazilian
Symposium on Computer Graphics and Image Processing,
pages 171-176, 1999.

K. Nakashima, T. Machida, K. Kiyokawa, and H. Taka-
mura. A 2d-3d integrated environment for cooperative work.
In Symposium on Virtual Reality Software and Technology,
pages 16-22. ACM, 2005.

L. Nigay and J. Coutaz. Problem space, fusion and paral-
lelism in multimodal interfaces. In Interface to Real and
Virtual Worlds, pages 67-76, 1993.

S. L. Oviatt. Multimodal Interfaces. Lawrence Erlbaum,
2003.

S. L. Oviatt, A. DeAngeli, and K. Kuhn. Integration and
synchronization of input modes during multimodal human-
computer interaction. In Proceedings of Conference on Hu-
man Factors in Computing Systems (CHI’97, pages 415-
422, New York, 1997. ACM Press.

(22]

(23]

(24]

[25]

[26]

(27]

(28]

162

Natal, RN, Brazil - May 2010

M. Puckette. Pure data: another integrated computer mu-
sic environment. In in Proceedings, International Computer
Music Conference, pages 37-41, 1996.

H. Regenbrecht, M. Wagner, and G. Baratoff. Magicmeet-
ing: A collaborative tangible augmented reality system.
Virtual Reality - Systems, Development and Applications,
6(3):151-166, 2002.

J. Rekimoto and M. Saitoh. Augmented surfaces: A spa-
tially continuous work space for hybrid computing environ-
ments. In CHI 99, pages 378-385. ACM, 1999.

D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari,
L. M. Encarnacdo, M. Gervautz, and W. Purgathofer. The
studierstube augmented reality project. Presence: Teleoper-
ators and Virtual Environments, 11:33-54, 2002.

A. K. SinhaandJ. A. Landay. Capturing user tests in a multi-
modal, multidevice informal prototyping tool. In /CMI *03:
Proceedings of the 5th international conference on Multi-
modal interfaces, pages 117-124, New York, NY, USA,
2003. ACM.

D. G. Trevisan, J. Vanderdonckt, and B. Macq. Conceptu-
alizing mixed spaces of interaction for designing continuous
interaction. Virtual Reality Journal, 8(2):83-95, 2004.

M. Turk and G. Robertson. Perceptual user interfaces. Com-
munications of the ACM, 43(3):32-70, 2000.

	Proceedings SVR 2010
	Cover Proc
	Proceedings SVR 2010
	Contra-Cover Proc

