
Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

VRCIA 2006, Hong Kong, 14–17 June 2006.

© 2006 ACM 1-59593-324-7/06/0006 $5.00

Towards the Use of CAD Models in VR Applications

Alberto Raposo∗ Eduardo T. L. Corseuil∗ Gustavo N. Wagner∗ Ismael H. F. dos Santos∗,†

Marcelo Gattass∗
∗TeCGraf – Computer Graphics Technology Group / Department of Computer Science

PUC-Rio – Pontifical Catholic University of Rio de Janeiro, Brazil
†Petrobras Research Centre - CENPES, Rio de Janeiro, Brazil

Abstract

One of the main objectives of the engineering departments of large
industries is the construction of integrated information systems to
control their projects, offering resources for the 3D visualization
of their models with enough realism to be used for virtual proto-
typing, design review, change management systems, and training,
among other activities. This work analyzes the main problems re-
lated to the production of Virtual Reality (VR) models derived from
CAD (Computer-Aided Design) models, which allows the user to
interact with them in real-time and have an immersive sensation.
The paper presents ENVIRON (ENvironment for VIRtual Objects
Navigation), an application that was developed motivated by the ne-
cessity of using VR in large industrial engineering models coming
from CAD tools.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; J.6 [Computer-Aided En-
gineering]: Computer-aided design (CAD)—;

Keywords: Virtual Reality, Real-time Visualization; Computer-
Aided Engineering; Design Review

1 Introduction

Large industries, such as automobile, aerospace, and oil & gas, are
investing in the construction of integrated information systems to
control their projects. They look for computational systems that,
besides accessing the databases with project information, offer re-
sources for the 3D visualization of their models with realism.

The difficulties encountered in this process are basically due to the
fact that the engineering models are not constructed to be visual-
ized in real time. In some cases, the models are visually simplified
representations, serving only as schematic representations of the
characteristics to be analyzed. In other cases, which are the ones
we are interested in, the models are too large and complex to be vi-
sualized in real time. For example, the generation of a CAD model
demands that the objects forms be highly detailed, since it is aimed
at the execution process, and does not consider the effects of this in
the real time 3D visualization.

In the conversion process from CAD models to VR models, we may
detect several problems regarding the visualization of the models:

∗{abraposo, thadeu, gustavow, ismael, mgattass}@tecgraf.puc-rio.br

• Low performance for complex models. The achieved
frame rates are unsatisfactory when very complex models are
loaded, especially in regions with large object concentrations.
This is worsened by the fact that the CAD to VR conversion
normally generates an unneeded model complexity, for ex-
ample, by using improper algorithms, tessellating invisible
details, making too fine LODs (Level of Details) or missing
them [Stanney 2002].

• Lack of realism. CAD models generally don’t have material
and texture information associated to objects, although many
CAD systems offer this possibility. This happens because this
information is not essential to the building process, which is
the aim of CAD models. However, this information is im-
portant for a realistic VR visualization. The application of
textures in individual objects in VR models is normally not
feasible, due to the complexity of the models.

• Inadequate treatment of geometry. During the conversion
from the CAD to the VR model, there is normally a loss of
geometry or precision [Berta 1999]. It is common to generate
VR models with insufficient quality, with errors such as wrong
side normals, cracks etc. Moreover, complex surfaces, such as
NURBS (NonUniform Rational B-Splines) that may appear
in CAD models, generate polygonal meshes in the VR model
that are generally inefficient for visualization, demanding a
different treatment.

• Loss of semantics. CAD models include project information
linked to each object. Some systems loose this link in the
CAD to VR conversion.

• One-way conversion. Generally, modifications realized dur-
ing the VR visualization cannot be automatically transmitted
back to the CAD model. For example, the results of a VR-
based design review must be registered somehow and repro-
duced manually in the CAD system.

Due to those difficulties, it is necessary a chain of adaptation steps
(usually manual) to adequately convert CAD models to VR ones
[Berta 1999], [Paillot et al. 2003]. To the best of our knowledge,
there is not yet a fully-functional integrated system where one can
migrate from a CAD to a VR model (and possibly vice-versa), al-
lowing easy interaction to make the necessary adjustments. The
conversion processes currently available are direct and generally
imprecise translations from CAD to VR, which are strongly depen-
dent on the translated CAD format. In the absence of a standard
for CAD to VR conversion, VR tools currently available use partial
solutions, limited to specific CAD formats and quite dependent on
user adjustments in the generated VR model.

In this context, this paper introduces ENVIRON (ENvironment for
VIRtual Objects Navigation), a tool developed to facilitate the use
of CAD models for VR applications. In this paper, we use the term
“CAD model” referring to the engineering model, and “VR model”
referring to the 3D model for real time visualization and interaction.

In the following section we present some related efforts in the com-
bination of CAD and VR. In section 3 we present ENVIRON, fo-

67

cusing mainly on its visualization module. Section 4 concludes the
paper.

2 Related Work

The integration of VR and CAD are investigated in two distinct
lines of research. At one side, VR is viewed as an advanced form of
human-computer interaction and used in common CAD tasks, such
as picking, drawing, etc. This kind of tool, called VRAD (Virtual
Reality Aided Design) tool, uses VR in the process of construct-
ing the CAD models [Fiorentino et al. 2004]. In the present work,
we are interested in the other kind of VR-CAD integration, which
is that of facing VR as an advanced form of visualizing the CAD
model in real-time and interacting with it in common CAD models
usages, such as design review and training [Berta 1999].

The problems encountered in the latter VR-CAD integration form
exist due to the diversity of purposes between CAD and VR tools.
CAD tools are used to create detailed models, aimed at the exe-
cution process. VR tools are used to support activities with a high
visualization demand, trying to provide the best possible immersion
in the physical setting by means of the virtual model. In order to
bridge the gap between both domains, very distinct VR-CAD inte-
gration solutions have been proposed. A possible way to analyze
the solutions is regarding the coupling between the CAD and VR
software [Vahl and Lukas 2003]. In this analysis dimension, we
may distinguish four approaches:

1. Systems connected by means of gateways to ease the conver-
sion process from the CAD model to the VR model. This is
the most common approach, suitable for the majority of CAD
and VR systems. In this process, CAD models are converted
to a format suitable for VR, such as VRML. Normally this
format is exported from the CAD system. The drawback is
that this approach does not offer any solution to the problems
mentioned above, such as inadequate treatment of geometry,
loss of semantics, etc.

2. Definition of a common file format for both CAD and VR
models. An example of such approach is the XMpLant, a
“neutral” CAD format based on XML to describe process
plants [AVEVA Group 2005]. However, XMpLant is more
focused on CAD to CAD formats conversion. In the CAD-
VR integration context, XMpLant’s interoperability potential
is clearly useful, but VR tools that will use it as input still need
to process it in order to solve some of the mentioned problems
of CAD to VR conversion.

3. Systems connected by means of an API. An example is the
use of OMG CAD Services interface [OMG 2005], which is
an interface standard, based on CORBA technology, to enable
the interoperability of CAD, CAM (Computer Aided Manu-
facturing) and CAE (Computer Aided Engineering) tools. A
prototype solution integrating this interface into a VR system
is presented in [Vahl and Lukas 2003]. The current limita-
tion of CAD Services interface is that is not widely adopted
by CAD and VR systems, demanding a high implementation
cost on both sides to integrate the CAD and the VR system
with that interface.

4. Integration in one process. In this approach, the VR system is
integrated into the core of the CAD system. This approach is
certainly the one more capable of solving the problems related
to the CAD-VR integration, since the VR system is capable of
covering all of the CAD model functions. However, it is a ven-
dor specific solution, lacking interoperability aspects present

in the previous approaches. An example of this approach is
presented in [Berta 1999].

ENVIRON follows a hybrid approach between categories 1 and 3
above. At the end, the information extracted from the CAD sys-
tem is stored in a file format developed specifically for this system,
similar to category 1 above. However, it is not simply a format ex-
ported from the CAD file. The format has been defined to include
some relevant semantic information, such as the links with asso-
ciated databases. Moreover, the information is extracted from the
CAD system by means of APIs native to the CAD systems, which
enables the extraction of the relevant semantic information (similar
to category 3).

Another way to see the CAD-VR integration is by analyzing the
coupling point between CAD and VR systems in their graphics
pipelines. Since both systems generally have a complete graphics
pipeline,“the level at which we cut one pipeline and hand-over the
data to the other system determines the integration concept” [Vahl
and Lukas 2003]. The considered graphics pipeline has four levels:
Feature modeler, modeler, tessellator, and renderer. Based on this
pipeline, there are five viable connection points:

a. From CAD renderer to VR image buffer. In this case, the VR
system is used only as a way to relate VR-specific input and
output devices to the visualization of the CAD system. The
limitation is that the CAD system must have an efficient ren-
dering performance to enable real-time visualization, which
is not always possible because as the data is extracted from
the CAD as it is needed, there is not much time to prepare the
data for a more efficient visualization.

b. From CAD tessellator to VR renderer. This approach demands
few computing costs from the VR system, since it is used only
for visualization of the CAD objects, whose meshes are trans-
mitted from CAD to VR. Although the VR renderer already
provides some optimizations to enable real time rendering,
this approach does not allow optimization in the tessellation,
hindering, for example, an adequate treatment of complex sur-
faces for the VR visualization.

c. From CAD modeler to VR tessellator. In this case, the CAD
system transmits graphical entities to the VR system, which
is responsible to the tessellation. Although the VR system is
capable of better preparing the surfaces for real time visualiza-
tion, this approach still does not transmit important features of
the CAD model, such as the topology of parts, and the relation
with external databases.

d. From CAD feature modeler to VR modeler. This approach
transmits parts and assemblies of the CAD model to the VR
system, which should be capable of interpreting and making
use of the semantic information associated to the geometry of
the parts. The assemblies are transmitted through their geo-
metric models.

e. From CAD project semantics to VR feature modeler. In this
case, a compact description of the CAD features is transmitted
to the VR system, which should be able to understand such
features and create the appropriate geometric and semantic
models.

From the above analysis, it is observed that moving from a to e,
we offer more possibilities to the VR system to treat the problems
of CAD-VR integration. However, the latter categories require the
extraction of more information from the CAD models, what is not
always possible, because some of them are closed formats, or be-
cause parts of this information are lost in the format translation.
Moreover, the latter categories require more sophisticated VR sys-

68

tems. For example, a VR system in category e must be able to
understand the complete CAD semantics.

Following this line of analysis, we can not say that ENVIRON fits
in a single category, since we try to get the best of each CAD for-
mat and respective elements. For example, when working with
Autodesk models, ENVIRON connects the CAD tessellator to the
VR renderer (category b), since the latter receives the tessellated
meshes. On the other hand, when working with PDS (Plant Design
System) [Intergraph 2005] formats, ENVIRON fits partially in dif-
ferent categories. For some kind of geometries, the meshes must be
received already tessellated (the same case of Autodesk models),
while others are transmitted parametrically, and tessellated by EN-
VIRON. In the latter case, ENVIRON connects the CAD modeler
to the VR tesselator (category c). The exported file format also in-
cludes some information regarding the objects’ topology and more
general semantic information, such as database links (categories d
and e).

There are a number of VR tools being developed to visualize CAD
models. However, to the best of the authors’ knowledge, none
of them provides a complete solution to the CAD-VR integration
problem. Nevertheless, some tools provide good solutions to spe-
cific problems.

Among the academic solutions for the real time visualization of
very large models, GigaWalk [Baxter et al. 2002] is one of the
most important initiatives. This system uses scene graph reorgani-
zation techniques, such as hierarchical LOD and occlusion culling
to achieve good visualization rates in CAD models with dozens of
millions polygons. The limitation of GigaWalk is that, because
of the necessary scene reorganization, it strongly depends on the
model pre-processing, which may take several hours in large mod-
els. It is important to clarify that efficient pre-processing techniques
may duplicate (or more) visualization performance, becoming quite
important when the models are very large.

Another system with similar objectives is REVIEW (Real-time Vir-
tual Environment Walkthrough) [Shou et al. 2001], which combines
“conventional” visualization techniques–such as frustum culling–
with large databases I/O optimization techniques.

Both GigaWalk and REVIEW have been developed focusing on
the visualization of very large models. Commercial systems tend
to have more generic objectives, and in general provide more re-
sources to the VR visualization of CAD models.

Among the available products, we may cite Division Reality [PTC
2005] and Walkinside [VRcontext 2005]. Although they have dif-
ferent focuses, both aim at generating a VR experience from the
CAD model. The Walkinside has a simple interface, based on
games, with few commands and intuitive use of the keyboard and
interaction devices. However, it is restricted to a couple of CAD
formats. The Division Reality, on the other hand, accepts more
CAD formats and has a direct manipulation of objects. However,
it is not accessible by desktop computers, being used only in high
performance graphic stations. Both have problems with complex
surfaces, such as NURBS.

3 ENVIRON

ENVIRON is a system composed of a 3D environment for real time
model visualization, and exportation plugins, which translate model
data from other applications into a format that can be understood by
ENVIRON.

This allows ENVIRON to view and interact with different kinds
of 3D data, as long as they are in a format which ENVIRON may
import or can be exported into one. Currently there is a DGN [Bent-
ley 1995] and a 3ds Max [Autodesk 2005] exporter developed, re-
spectively, as MicroStation and 3ds Max plugins. The goal of Mi-
croStation plugin is not only to convert DGN files into a graphic
format that enables the real time interaction and navigation in the
CAD model, but also to recover and export the semantic informa-
tion associated to the CAD’s objects. In parallel, the 3dsmax plugin
enables the use of more photo-realistic models, not necessarily gen-
erated by a CAD tool.

The initial step of the CAD to RV conversion process is the under-
standing of the CAD format and its internal structure. The DGN
format was chosen as the first one to be exported to ENVIRON
because it is the standard in important Brazilian industries, whose
projects are generated in PDS–Plant Design System [Intergraph
2005]. We use MDL (MicroStation Development Language) [Bent-
ley 1999] to develop the plugin that accesses the internal structure
of DGN models and the data capture. The DGN internal structure
is then exported by the plugin to another format, which we called
TDGN. This format makes the link between the CAD tool and EN-
VIRON visualization module, since DGN full internal structure is
only accessible by MicroStation tools.

DGN objects are exported in three distinct types: parametric ob-
jects, NURBS and triangle meshes. The use of these types for visu-
alization is discussed in section 3.1.1. Some important information
of DGN is included in TDGN. An example is the layer identifica-
tion of each object, which is used to separate objects of distinct
contexts in the CAD model. This information in TDGN associates
the visualization to the project semantics and may be used to restrict
the visualization to appropriate parts of the model.

Following the idea of bringing the design information to the VR
visualization, it was also necessary to understand the relations be-
tween the information in the DGN file (graphic objects) and the
information coming from the project database system. These links
are also included in the TDGN format.

Although ENVIRON is committed to the visualization of CAD
models, it was necessary to make it compatible with a tool capable
of generating more realistic models. This necessity arises in non-
technical and marketing presentations, where appearance is more
important than accuracy. Therefore, we developed another plugin
for exporting 3ds Max models.

3.1 Visualization Module

The visualization module of ENVIRON imports the formats that
are exported by the Microstation and 3ds Max plugins and executes
the real time visualization of the models.

To enable a robust and efficient scene structuring and to enhance
the application performance, we use the OpenSceneGraph (OSG)
[Osfield and Burns 2005]. It implements important optimizations
for the real time visualization of models, such as frustum culling
and techniques to reduce OpenGL state changes (lazy state change).
Moreover, OSG is open source and has been showing extremely ex-
tensible. Some implementation aspects of the visualization module
are detailed in the following subsections.

3.1.1 Handling objects for visualization

Objects are loaded from TDGN as parametric ones, triangle
meshes, or NURBS. Due to the characteristics of process plants,

69

production units, such as platforms and refineries, there are objects
such as pipe and pipe joints that may appear in large number in
these models. These common objects are stored in TDGN using the
parametric form. This way we reduce the file size and the memory
footprint during the visualization, and enable the dynamic creation
of meshes. The parametric objects support was integrated to OSG,
being available for simple primitives, such as cylinders, spheres,
lines, and curves, and their extrusion and revolutions.

For parametric objects, the information read is used to generate,
when necessary, different visualization meshes, according to their
distance to the observer. These objects enable the use of a LOD al-
gorithm, implemented in the ENVIRON visualization module, that
uses the parametric information of the object to generate, accord-
ing to its position, the triangle mesh needed for the visualization.
Therefore, in this visualization phase, there is a reduction in the re-
quired memory because no mesh is generated for objects that are
far away from the observer. This process offers the advantages
of an automatic LOD algorithm, without the necessity of a pre-
processing phase.

The simpler parametric objects, like cylinders and spheres, are ren-
dered using GPU vertex and fragment shaders. The shaders allow
us to use the parametric parameters of each object to determine
its shape, directly on the graphics card. The result is a perfectly
smooth shape, without requiring an excessively tessellated mesh.
In addition to improved rendering quality, these shapes also give
us performance advantages over the CPU-based approach, which
creates many different meshes for each object. As we have a fixed
mesh, which does not need to be varied over time for each object,
we are able to put them on Display-Lists and to group nearby para-
metric objects of similar types in clusters. Grouping small geome-
try in clusters is key to improving rendering performance on large
scenes, once we avoid the repetitive reloading of vertex and frag-
ment shaders. Additionally, the amount of processing used by frag-
ment shader for each object is proportional to the number of frag-
ments rendered, which is proportional to the space occupied by the
object in the screen. This creates a kind of “intrinsic LOD”, reduc-
ing the computational cost for rendering small objects.

In some cases, due to the difficulty of recognizing an object as a
simple parametric form, such as a sphere or a cylinder, it is stored
in the intermediary file in a mesh format and loaded directly by
ENVIRON visualization module. Once these meshes are gener-
ated directly by internal functions of MicroStation (or 3ds Max),
we have no control on their efficiency. In these cases, ENVIRON
uses OSG resources directly, such as frustum culling and small fea-
tures culling.

The third form that an object may be imported in ENVIRON is
in NURBS form, which needs a special treatment. As previously
stated, complex surfaces in the CAD model are a bottleneck in the
generation of the VR model. CAD tools normally have limitations
to generate models based on this kinds of surface. Generally, sur-
faces generated by these tools are not optimized for visualization,
since they have an excessive number of definition parameters.

High precision surfaces are important in CAD models as their ac-
curacy has direct impact on the quality of any information extracted
from the model. For real-time visualization, on the other hand, most
of this extra precision may be discarded.

Although CAD tools may offer functions for surface simplification
and triangulation, they generally do not have the desired result,
since these processes are not aimed at real time visualization. To
reduce the general problem of displaying surfaces in real-time, we
created an algorithm to make the pre-processing of the imported
parametric surfaces and generate an adequate visualization mesh,
with respect to performance and visual accuracy. The goal is to

obtain a mesh which geometric representation is analogous to the
exported surface, but with a simplified discretization compared to
the original model.

Morevover, there is another problem besides generating a simpli-
fied mesh. In the real CAD models we worked with, some objects
were represented as a combination of many unconnected NURBS
surfaces, which when triangulated independently would create ver-
tices which would not match each other, on the borders of adjacent
surfaces. This creates an artifact called T-Vertex (Figure 1a), very
noticeable in the generated images.

To eliminate these T-Vertices, we developed a special NURBS tes-
sellation algorithm, which uses information from adjacent surfaces
to match the vertices on their borders.

T-Vertices are an effect of the NURBS surfaces triangulation. By
working during the tessellation process rather than by trying to fix
an already existing mesh, we can take advantage of the information
present on NURBS formulation, which is much more accurate and
reliable than the discrete mesh. The algorithm works in 3 steps:

1. Evaluate a string of discrete points along the border of the
NURBS surface.

2. For each surface, walk along the string of points that define its
border defining which points will be used on its tessellation:

a If a vertex of the triangulation of the border of another sur-
face is found in that position, force it to be used on this
surface’s border. Usually, only two surfaces share a sin-
gle border: This step ensures that the vertices selected
for the second surface matches the ones of the first.

b If no vertex from another surface is found, use a any tra-
ditional criteria for deciding whether this point should
be used, like edge maximum length, maximum surface
curvature or others.

3. Tessellate the surfaces using two methods:

a The inner portion of the surface is formed by a uniform
NxM grid (areas formed by squared polygons in Fig-
ure 1b).

b The border of the surface is formed by a single strip of
triangles, containing all the vertices selected on the bor-
der.

The resulting mesh has no T-Vertices, which makes it suitable for
3D visualization. For this implementation, a library for NURBS
visualization, NURBS++ [Lavoie 1999], was adapted to the visual-
ization module.

3.1.2 Object manipulation

An important feature for a VR system, when working with CAD
generated models, is the ability to move, rotate and scale objects
during the visualization, and also to measure distances. This is in-
teresting for various purposes, like joining different models in a
scene, testing the placement of equipment on a plant, or permitting
the visualization of hidden portions of the model.

Currently, the main input device used for manipulating scene ob-
jects is the mouse, due to its universal availability. However, it
has the inconvenient of being a 2D device, while the manipulations
takes place in a 3D world. The 3D motion can be simulated by al-
lowing the user to restrict its motion to a certain axis or 2D plane
on the scene. This is achieved intuitively by using a manipulation
gizmo, as shown in Figure 2. By choosing one of the three axes of

70

Figure 1: Shell of a real ship, composed of 90 NURBS surfaces. a) Wireframe view of the simplified surface with T-Vertices; b) T-Vertices
eliminated after the application of the algorithm.

the gizmo, the user restricts its motion in the direction of that axis.
If a pair of axes is chosen, motion is restricted to the plane formed
by those two axes. Rotation and scaling works in analogous ways.

Figure 2: Moving an object in ENVIRON.

Other 3D input devices, such as 6DoF trackers, may be used to ma-
nipulate the objects on the scene when using ENVIRON attached
to ViRAL, a VR framework for device abstraction (Section 3.1.4).

3.1.3 Ambient elements

In addition to a good representation of the CAD model, another im-
portant aspect is its insertion in a realistic environment. Regarding
this aspect, ENVIRON integrates dynamic representations of the
sky, terrains, and the ocean. Since most of the models we work
with are offshore oil platforms, special attention was given to the
ocean simulation.

The ocean simulation used is based on a simple yet effective im-
plementation, working in two steps: First it uses terrain rendering

techniques to generate a base mesh which, on the second step, is an-
imated with a Gerstner Wave [Tessendorf 2002] generation model.

The most basic idea behind any terrain rendering engine is to assign
more triangles to areas which are nearer to the camera than to areas
which are far away from it, which is exactly what we require for
a realistic ocean simulation. Additionally, terrain engines usually
try to ensure that regions with sharper variations are assigned most
triangles than regions with smoother variations. This is not impor-
tant for our ocean simulation, and can be ignored for our algorithm.
As in a terrain rendering algorithm, our ocean mesh is generated
recursively, by successive subdivisions of a base squared surface.
Regions nearer to the camera are subdivided more deeply, and the
borders joining adjacent regions with different resolutions receive a
special treatment, to avoid the formation of T-Vertices.

Additionally, resolutions transitions are blended smoothly into each
other, by using geomorphing, which avoids that vertices which
won’t be present on a lower resolution region simply disappear
abruptly. Glitches are avoided by moving these vertices progres-
sively to a position on the surface of the face that will occupy its
place, before the resolution changes.

The wave simulation is obtained by the use of Gerstner Waves,
which consists of a simple summation of sinusoidal waves. Each
vertex on the surface of the ocean is displaced according to the
equations 1 and 2 below:

~x = ~x0 − ∑
i=1...N

(
~ki/ki

)
Ai sin

(
~ki · ~x0 −ωit

)
(1)

z = ∑
i=1...N

Ai cos
(
~ki · ~x0 −ωit

)
(2)

k = 2π/λ (3)
kA > λ (4)

In equations 1 and 2, ~x and ~x0 are 2D vectors corresponding re-
spectively to the displaced and original position of the vertex on the
ocean’s 2D plane. Variable z represents the vertical displacement
for that vertex. Vector~k , named wavevector, represents the wave’s
direction. Constant k is calculated from the wavelength (equation

71

3). The frequency of this wave is represented by λ and its ampli-
tude is given by A. In order to avoid inconsistent waves, we must
always respect inequality 4. Figure 3 shows the redered ocean.

Figure 3: The ocean rendered by ENVIRON, and its configuration
dialog.

Experiments indicates that the impact of the ocean renderization on
overall performance is relatively small, specially in large models.
For example, in a Pentium 4, 3GB RAM, nVidia Quadro FX1000,
using a VR model with 2.3 million polygons, the rendering rate was
12.9 fps without the ocean and 11.5 fps with the ocean.

3.1.4 Other visualization features

One of the key problems in the CAD to VR conversion is the loss of
semantics. Regarding this aspect, ENVIRON is capable of access-
ing the information stored in the project database associated to the
CAD model. This is possible if the key to the objects identification
is present in the original CAD model. This capacity offers better
parameters for the user to evaluate the model and to analyze pos-
sible alterations (Figure4). For example, it is possible to identify
the composition of a process plant sub process based on the iden-
tification of their objects that are defined in the database. It is also
possible to generate exploded views of the model [Niederauer et al.
2003].

Figure 4: Visualization of data information associated to the ob-
jects.

To enable the use of ENVIRON in VR environments with differ-
ent kinds of devices, we developed an independent tool, called

ViRAL (Virtual Reality Abstraction Layer), which may also be
used with other VR applications. ViRAL is a tool designed to facil-
itate the development of VR applications. Applications developed
with ViRAL are device independent, because ViRAL abstracts the
context in which the application will be executed. The application
doesn’t have to know, for example, in how many windows, with
how many users, or with which devices it is going to function. All
these incognites are configurations defined by the application op-
erator, making it possible to execute the same application in dif-
ferent VR systems without the necessity to modify the application.
ViRAL has a graphical user interface used to configure all devices,
displays, projections and scenes.

In essence, ViRAL has the same objectives of any other abstraction
device tool, such as VRJuggler [Bierbaum 2000] or Diverse [Kelso
et al. 2002]. However, ViRAL has at least two major differences
with other VR toolkits. The first one is that it can be run as the
VR application. The developer creates plugins and uses ViRAL to
load and run them. The second important difference is that ViRAL
can also be used embedded in a host application, as is the case of
ENVIRON. The configuration panels of ViRAL can be shown from
within a third party application. This way ViRAL is not the running
application, but all its VR abstraction features can be called from
the host application. The use of ENVIRON combined to ViRAL en-
ables the presentation in fully immersive multi-display VR settings,
as well as the use of 6 DoF input devices.

In order to give the user a better visualization control, some para-
meters may be redefined in real time, during the interaction. For
example, the near and far cutting planes and the FOV may be rede-
fined at any time (Figure 5). The same applies to the configuration
of the stereo visualization.

Figure 5: ENVIRON screenshot.

Since the navigation in a 3D environment is not an easy task, spe-
cially in places with a high density of objects, as is the case of in-
dustrial plants, ENVIRON provides the possibility to store naviga-
tion paths. These paths may also be used to automatically generate
stereo AVI files, that can be viewed independently of ENVIRON.

An important step toward expanding the use of VR in industry is to
integrate other systems or environments to the VR model converted
from the CAD. The idea is to bring other classes of data to the VR
model in order to build a more complex virtual environment.

An example we are currently working on is in the integration of
a particle system to simulate, for example, the effects of an oil

72

spillage. Another example, which is the long term goal of ENV-
IRON, is to integrate to the virtual environment not only the CAD
model, but also the model coming from GIS (Geographic Infor-
mation System) systems, representing the surface of a region, and
seismic data sets. In the specific case of oil & gas industry, the
integrated virtual environment would be an oil exploration area, in-
cluding the CAD models of ships, platforms and undersea equip-
ments, the GIS models that represent the oil exploration basin, and
the representation of the subterranean reservoir.

4 Conclusions

ENVIRON is part of a research initiative to create an infrastructure
for the “immediate” generation of VR environments from the CAD
models, a task that currently requires a significant effort from the
VR teams in industry.

In this context, ENVIRON has been designed to be an extensible
tool, with flexibility to receive new functionalities and to incorpo-
rate plugins, according to the different necessities of the industry.
This conception is the opposite of that of the available commercial
solutions, normally offered as “black boxes”, with enhancements
implemented by the developer on demand. We are trying to con-
tinuously enhance ENVIRON with the advances in the field. One
of the next steps is to develop a collaborative version of ENVIRON
to enable not only remote users to collaborate, but also co-located
users, interacting simultaneously via PDAs.

Among the main problems of the CAD to VR conversion mentioned
in section 1, ENVIRON has been particularly well succeeded in
the treatment of geometry, specially of complex surfaces. Regard-
ing loss of semantics, the connection to the databases is an impor-
tant step in this direction. Regarding scene realism, ENVIRON al-
ready offers some important resources, such as GPU programming
with specialized shaders, and the possibility to use models from 3ds
Max.

Regarding performance, ENVIRON was developed based on CAD
models of the oil & gas industry. More specifically, models of plat-
forms and FPSOs (Floating, Production, Storage and Offloading),
which are production and storage platforms adapted over oil ship
shells. The data were furnished by Petrobras (Brazilian Oil & Gas
Company) and were generated by PDS. Although ENVIRON per-
formance is good for a great part of available CAD models, this
is perhaps the subject that still deserves more attention, especially
because ENVIRON is designed to run in desktop computers and to
visualize CAD models with increasing complexity.

Finally, the last problem mentioned in section 1, which is the con-
version from the VR model back to the CAD model, has not been
treated in this research yet.

The problems presented in the CAD to VR path have not been to-
tally solved by any commercial or academic solution yet. This fact
restricts, but doesn’t impede the use of these systems in industry.
The process is still executed in parts, some of them requiring man-
ually interventions, which are specific for the working model. Nev-
ertheless, there are already advantages in the use of VR models gen-
erated from CAD models in processes like construction simulation,
training, and equipment maintenance.

The problems presented will be minimized when standards for the
CAD to VR conversion are established. Meanwhile, the effort pre-
sented in this work, as well as other efforts occurring in parallel are
valid in the search for these solutions.

Acknowledgements

Virtual Reality research at Tecgraf/PUC-Rio is mainly supported by
CENPES/PETROBRAS and FINEP (CT-Petro project).

References

AUTODESK. 2005. 3ds Max. http://www.autodesk.com.

AVEVA GROUP. 2005. XMpLant. http://www.aveva.com/ me-
dia centre/library/datasheets/vnet xmplant.pdf.

BAXTER, W., SUD, A., GOVINDARAJU, N., AND MANOCHA, D.
2002. Gigawalk: Interactive walkthrough of complex environ-
ments. In Eurographics Workshop on Rendering, 203–214.

BENTLEY. 1995. MicroStation 95 Ref. Guide, ch 18. Bentley
Systems Incorporated: Intergraph Standard File Formats.

BENTLEY. 1999. MDL Function Reference Manual. Bentley Sys-
tems Incorporated.

BERTA, J. 1999. Integrating VR and CAD. IEEE Computer Graph-
ics and Applications 19, 5, 14–19.

BIERBAUM, A. D. 2000. VR Juggler: A Virtual Platform for
Virtual Reality Application Development. Master’s thesis, Iowa
State University.

FIORENTINO, M., MONNO, G., AND UVA, A. E. 2004. Smart
tools for virtual reality based cad. In ADM-AIAS International
Conference.

INTERGRAPH. 2005. PDS - Plant Design System.
http://ppm.intergraph.com/pds/.

KELSO, J., ARSENAULT, L., SATTERFIELD, S., AND KRIZ, R.
2002. DIVERSE: A Framework for Building Extensible and Re-
configurable Device Independent Virtual Environments. In Pro-
ceedings of IEEE Virtual Reality, 183–192.

LAVOIE, P. 1999. NURBS++: The Nurbs Package - User’s Refer-
ence Manual Version 3.0. http://libnurbs.sourceforge.net.

NIEDERAUER, C., HOUSTON, M., AGRAWALA, M., AND
HUMPHREYS, G. 2003. Non-invasive interactive visualization
of dynamic architectural environments. In SI3D ’03: Proceed-
ings of the 2003 symposium on Interactive 3D graphics, ACM
Press, 55–58.

OMG. 2005. Computer Aided Design Service, V 1.2.
http://www.omg.org/technology/documents/formal/cad.htm, Ob-
ject Management Group, January.

OSFIELD, R., AND BURNS, D. 2005. Open Scene Graph.
http://www.openscenegraph.org.

PAILLOT, D., MERIENNE, F., AND THIVENT, S. 2003. Cad/-
cae visualization in virtual environment for automotive industry.
In EGVE ’03: Proceedings of the workshop on Virtual environ-
ments 2003, 315–316.

PTC. 2005. Division Reality. http://www.ptc.com/, Parametric
Technology Corporation.

SHOU, L., CHIONH, J., HUANG, Z., RUAN, Y., AND TAN, K.-
L. 2001. Walking through a very large virtual environment in
real-time. In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, 401–410.

73

STANNEY, K. M., Ed. 2002. Handbook of Virtual Environ-
ments: Design, Implementation and Applications. Lawrence Erl-
baum Associates Inc., ch. 62 – Engineering Applications – O. H.
Riedel, D. Rantzau and R. Breining.

TESSENDORF, J. 2002. Simulating ocean water. In SIGGRAPH
2002 Course Notes #9 (Simulating Nature: Realistic and Inter-
active Techniques), ACM Press.

VAHL, M., AND LUKAS, U. 2003. Integration of virtual reality and
cad based on omg’s cad services interface. In European Con-
current Engineering Conference (EUROSIS - European Multi-
disciplinary Society for Modelling and Simulation Technology),
54–61.

VRCONTEXT. 2005. Walkinside. http://www.walkinside.com/.

74

abraposo
Text Box
RAPOSO, A. B., CORSEUIL, E. T. L., WAGNER, G. N., SANTOS, I. H. F., GATTASS, M. Towards the use of cad models in VR applications. Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications - VRCIA, p. 67-74. Hong-Kong, China, 2006. ACM Press.

