
Images of Julia sets that you can trust

Luiz Henrique de Figueiredo

with
Diego Nehab (IMPA) • Jorge Stolfi (UNICAMP) • João Batista Oliveira (PUCRS)

Can we trust this beautiful image?

C
u
rt
is

M
cM

u
ll
en

Julia sets

Study the dynamics of f (z) = z2 + c for c ∈ C fixed

z1 = f (z0), z2 = f (z1), . . . , zn = f (zn−1) = f n(z0)

What happens with the orbit of z0 ∈ C under f ?

M unbounded orbits

attraction basin of ∞ A(∞)

M bounded orbits

filled Julia set K

M common boundary Julia set J

Julia sets

M unbounded orbits

attraction basin of ∞ A(∞)

M bounded orbits

filled Julia set K
M common boundary Julia set J

Julia sets

M unbounded orbits attraction basin of ∞ A(∞)
M bounded orbits

filled Julia set K
M common boundary Julia set J

Julia sets

M unbounded orbits attraction basin of ∞ A(∞)
M bounded orbits filled Julia set K

M common boundary Julia set J

Julia sets

M unbounded orbits attraction basin of ∞ A(∞)
M bounded orbits filled Julia set K
M common boundary Julia set J

Julia set zoo

G
le
n
n
E
le
rt

Julia set catalog: the Mandelbrot set

demo. . .

P
a
u
l
B
o
u
rk
e

c ∈M := 0 ∈ Kc

Julia–Fatou dichotomy
c ∈M ⇒ Jc is connected
c 6∈ M ⇒ Jc is a Cantor set

Julia set catalog: the Mandelbrot set demo. . .
P
a
u
l
B
o
u
rk
e

c ∈M := 0 ∈ Kc

Julia–Fatou dichotomy
c ∈M ⇒ Jc is connected
c 6∈ M ⇒ Jc is a Cantor set

Why distrust this beautiful image?

C
u
rt
is

M
cM

u
ll
en

Why distrust this beautiful image?

C
u
rt
is

M
cM

u
ll
en

Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)

Why distrust this beautiful image?

C
u
rt
is

M
cM

u
ll
en

Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)

Escape radius

Lemma. If z ∈ C and |z | > R = max(|c |, 2) ⇒ |f n(z)| → ∞ as n→∞.

Proof. The triangle inequality gives

|z2| = |z2 + c − c | ≤ |z2 + c|+ |c |

and so

|f (z)| = |z2+c | ≥ |z2|−|c | = |z |2−|c | > |z |2−|z | = |z |(|z |−1) > |z | > R

Iterating, we get |f n(z)| > |z |(|z | − 1)n →∞ because |z | − 1 > 1.

Corollary. Every unbounded orbit escapes to ∞. A(∞)

Why distrust this beautiful image?

C
u
rt
is

M
cM

u
ll
en

Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)

Why distrust this beautiful image?

C
u
rt
is

M
cM

u
ll
en

Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)

Why distrust this beautiful image?

I Spatial sampling
need fine grid
what happens between samples?

I Partial orbits

program cannot run forever

I Floating-point rounding errors

squaring needs double digits

Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)

Why distrust this beautiful image?

I Spatial sampling

need fine grid
what happens between samples?

I Partial orbits
program cannot run forever

I Floating-point rounding errors

squaring needs double digits

Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)

Why distrust this beautiful image?

I Spatial sampling

need fine grid
what happens between samples?

I Partial orbits

program cannot run forever

I Floating-point rounding errors
squaring needs double digits

Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)

Why distrust this beautiful image?

I Spatial sampling
Compute color on grid points
Cannot be sure grid is fine enough
Cannot be sure behavior at sample points is typical
Finer grid ⇒ more detail

I Partial orbits
Can only compute partial orbits
Cannot be sure partial orbits are long enough
Longer orbits ⇒ more detail

I Floating-point errors
z2 needs twice the number of digits that z needs
Do rounding errors during iteration influence classification of points?
Multiple-precision ⇒ more detail (deep zoom)

You can trust our method

I No spatial sampling

Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree ⇒ more detail

I No orbits

Evaluate f once on each cell using interval arithmetic
Perform no function iteration at all
Use cell mapping and color propagation in graphs

I No floating-point errors

All numbers are dyadic fractions with restricted range and precision
Use error-free fixed-point arithmetic
Precision depends only on spatial resolution
Standard double-precision floating-point enough for huge images

You can trust our method

I No spatial sampling
Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree ⇒ more detail

I No orbits

Evaluate f once on each cell using interval arithmetic
Perform no function iteration at all
Use cell mapping and color propagation in graphs

I No floating-point errors

All numbers are dyadic fractions with restricted range and precision
Use error-free fixed-point arithmetic
Precision depends only on spatial resolution
Standard double-precision floating-point enough for huge images

You can trust our method

I No spatial sampling
Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree ⇒ more detail

I No orbits
Evaluate f once on each cell using interval arithmetic
Perform no function iteration at all
Use cell mapping and color propagation in graphs

I No floating-point errors

All numbers are dyadic fractions with restricted range and precision
Use error-free fixed-point arithmetic
Precision depends only on spatial resolution
Standard double-precision floating-point enough for huge images

You can trust our method

I No spatial sampling
Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree ⇒ more detail

I No orbits
Evaluate f once on each cell using interval arithmetic
Perform no function iteration at all
Use cell mapping and color propagation in graphs

I No floating-point errors
All numbers are dyadic fractions with restricted range and precision
Use error-free fixed-point arithmetic
Precision depends only on spatial resolution
Standard double-precision floating-point enough for huge images

Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I white rectangles
contained in A(∞)

I black rectangles
contained in K

I gray rectangles
contain J

certified decomposition

Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I white rectangles
contained in A(∞)

I black rectangles
contained in K

I gray rectangles
contain J

certified decomposition

Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I refinement

I cell mapping

I color propagation

Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I refinement

I cell mapping

I color propagation

Quadtree c = −1 level 0

Quadtree c = −1 level 1

Quadtree c = −1 level 2

Quadtree c = −1 level 3

Quadtree c = −1 level 4

Quadtree c = −1 level 5

Quadtree c = −1 level 6

Quadtree c = −1 level 7

Quadtree c = −1 level 8

Quadtree c = −1 level 9

Quadtree c = −1 level 10

Quadtree c = −1 level 11

Quadtree c = −1 level 12

Quadtree c = −1 level 13

Quadtree c = −1 level 14

Adaptive approximation c = −1 level 14

Adaptive approximation c = −1 level 0

Adaptive approximation c = −1 level 1

Adaptive approximation c = −1 level 2

Adaptive approximation c = −1 level 3

Adaptive approximation c = −1 level 4

Adaptive approximation c = −1 level 5

Adaptive approximation c = −1 level 6

Adaptive approximation c = −1 level 7

Adaptive approximation c = −1 level 8

Adaptive approximation c = −1 level 9

Adaptive approximation c = −1 level 10

Adaptive approximation c = −1 level 11

Adaptive approximation c = −1 level 12

Adaptive approximation c = −1 level 13

Adaptive approximation c = −1 level 14

Adaptive approximation c = −1

Adaptive approximation c = −1

Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I refinement

I cell mapping

I color propagation

Cell mapping

Directed graph on the leaves of the quadtree and exterior

I edges emanate from each leaf gray cell A

I add edge A→ B for each leaf cell B that intersects f (A)

f (A) ⊆
⋃

A→B

B

Conservative estimate of the dynamics

Avoid point sampling

Cell mapping

Directed graph on the leaves of the quadtree and exterior

I edges emanate from each leaf gray cell A

I add edge A→ B for each leaf cell B that intersects f (A)

f (A) ⊆
⋃

A→B

B

Conservative estimate of the dynamics

Avoid point sampling

Cell mapping source cell leaf gray cell

Cell mapping exact image under f

Cell mapping bounding box interval arithmetic

Cell mapping quadtree traversal

Cell mapping target cells contain exact image

Cell mapping edges

Cell mapping edges demo. . .

Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I refinement

I cell mapping

I color propagation

Color propagation

Propagate white and black to gray cells

I new white cells
gray cells for which all paths end in white cells

I new black cells
gray cells for which no path ends in a white cell

Graph traversals replace function iteration

Avoid floating-point errors

Color propagation

Propagate white and black to gray cells

I new white cells
gray cells for which all paths end in white cells

I new black cells
gray cells for which no path ends in a white cell

Graph traversals replace function iteration

Avoid floating-point errors

The algorithm initial approximation

The algorithm refinement

The algorithm cell mapping

The algorithm new white cells. . .

The algorithm new white cells. . .

The algorithm new white cells

The algorithm gray cells that reach white. . .

The algorithm gray cells that reach white. . .

The algorithm gray cells that reach white

The algorithm new black cells

Adaptive approximation examples

Adaptive approximation c = 0.12 + 0.30 i level 0

Adaptive approximation c = 0.12 + 0.30 i level 1

Adaptive approximation c = 0.12 + 0.30 i level 2

Adaptive approximation c = 0.12 + 0.30 i level 3

Adaptive approximation c = 0.12 + 0.30 i level 4

Adaptive approximation c = 0.12 + 0.30 i level 5

Adaptive approximation c = 0.12 + 0.30 i level 6

Adaptive approximation c = 0.12 + 0.30 i level 7

Adaptive approximation c = 0.12 + 0.30 i level 8

Adaptive approximation c = 0.12 + 0.30 i level 9

Adaptive approximation c = 0.12 + 0.30 i level 10

Adaptive approximation c = 0.12 + 0.30 i level 11

Adaptive approximation c = 0.12 + 0.30 i level 12

Adaptive approximation c = 0.12 + 0.30 i level 13

Adaptive approximation c = 0.12 + 0.30 i level 14

Adaptive approximation c = 0.12 + 0.30 i

Adaptive approximation c = 0.12 + 0.30 i

Adaptive approximation c = −0.12 + 0.60 i level 0

Adaptive approximation c = −0.12 + 0.60 i level 1

Adaptive approximation c = −0.12 + 0.60 i level 2

Adaptive approximation c = −0.12 + 0.60 i level 3

Adaptive approximation c = −0.12 + 0.60 i level 4

Adaptive approximation c = −0.12 + 0.60 i level 5

Adaptive approximation c = −0.12 + 0.60 i level 6

Adaptive approximation c = −0.12 + 0.60 i level 7

Adaptive approximation c = −0.12 + 0.60 i level 8

Adaptive approximation c = −0.12 + 0.60 i level 9

Adaptive approximation c = −0.12 + 0.60 i level 10

Adaptive approximation c = −0.12 + 0.60 i level 11

Adaptive approximation c = −0.12 + 0.60 i level 12

Adaptive approximation c = −0.12 + 0.60 i level 13

Adaptive approximation c = −0.12 + 0.60 i level 14

Adaptive approximation c = −0.12 + 0.60 i

Adaptive approximation c = −0.12 + 0.60 i

Adaptive approximation c = −0.12 + 0.74 i level 0

Adaptive approximation c = −0.12 + 0.74 i level 1

Adaptive approximation c = −0.12 + 0.74 i level 2

Adaptive approximation c = −0.12 + 0.74 i level 3

Adaptive approximation c = −0.12 + 0.74 i level 4

Adaptive approximation c = −0.12 + 0.74 i level 5

Adaptive approximation c = −0.12 + 0.74 i level 6

Adaptive approximation c = −0.12 + 0.74 i level 7

Adaptive approximation c = −0.12 + 0.74 i level 8

Adaptive approximation c = −0.12 + 0.74 i level 9

Adaptive approximation c = −0.12 + 0.74 i level 10

Adaptive approximation c = −0.12 + 0.74 i level 11

Adaptive approximation c = −0.12 + 0.74 i level 12

Adaptive approximation c = −0.12 + 0.74 i level 13

Adaptive approximation c = −0.12 + 0.74 i level 14

Adaptive approximation c = −0.12 + 0.74 i

Adaptive approximation c = −0.12 + 0.74 i

Adaptive approximation c = i level 0

Adaptive approximation c = i level 1

Adaptive approximation c = i level 2

Adaptive approximation c = i level 3

Adaptive approximation c = i level 4

Adaptive approximation c = i level 5

Adaptive approximation c = i level 6

Adaptive approximation c = i level 7

Adaptive approximation c = i level 8

Adaptive approximation c = i level 9

Adaptive approximation c = i level 10

Adaptive approximation c = i level 11

Adaptive approximation c = i level 12

Adaptive approximation c = i level 13

Adaptive approximation c = i level 14

Adaptive approximation c = i

Adaptive approximation c = i

Adaptive approximation c = −0.25 + 0.74 i level 0

Adaptive approximation c = −0.25 + 0.74 i level 1

Adaptive approximation c = −0.25 + 0.74 i level 2

Adaptive approximation c = −0.25 + 0.74 i level 3

Adaptive approximation c = −0.25 + 0.74 i level 4

Adaptive approximation c = −0.25 + 0.74 i level 5

Adaptive approximation c = −0.25 + 0.74 i level 6

Adaptive approximation c = −0.25 + 0.74 i level 7

Adaptive approximation c = −0.25 + 0.74 i level 8

Adaptive approximation c = −0.25 + 0.74 i level 9

Adaptive approximation c = −0.25 + 0.74 i level 10

Adaptive approximation c = −0.25 + 0.74 i level 11

Adaptive approximation c = −0.25 + 0.74 i level 12

Adaptive approximation c = −0.25 + 0.74 i level 13

Adaptive approximation c = −0.25 + 0.74 i level 14

Adaptive approximation c = −0.25 + 0.74 i

Adaptive approximation c = −0.25 + 0.74 i

Applications

certified numerical results

I Image generation

large images
smaller images with anti-aliasing

I Point and box classification

quadtree traversal + one function evaluation if gray

I Fractal dimension of Julia set

(Ruelle)

upper bound dimH = 1 +
|c|2

4 log 2
+ · · ·

I Area of filled Julia set

(Milnor)

lower and upper bounds π(1− |p1(c)|2 − 3|p2(c)|2 − 5|p3(c)|2 − · · ·)

I Diameter of Julia set

lower and upper bounds

Applications certified numerical results

I Image generation
large images
smaller images with anti-aliasing

I Point and box classification
quadtree traversal + one function evaluation if gray

I Fractal dimension of Julia set (Ruelle)

upper bound dimH = 1 +
|c|2

4 log 2
+ · · ·

I Area of filled Julia set (Milnor)

lower and upper bounds π(1− |p1(c)|2 − 3|p2(c)|2 − 5|p3(c)|2 − · · ·)

I Diameter of Julia set
lower and upper bounds

Area of filled Julia sets after Milnor

Inverse Böttcher map ψ : C \ D→ C \ K

ψ(w2) = ψ(w)2 + c

Laurent series near ∞

ψ(w) = w
(

1 +
a2
w2

+
a4
w4

+
a6
w6

+ · · ·
)

a2 = −c

2
a2n =

1

2
(an − a2n)−

∑
2≤j<n
j even

aja2n−j a2n+1 = 0

Gronwall’s area theorem

area(K) = π(1− |a2|2 − 3|a4|2 − 5|a6|2 − · · ·)

Truncating series gives upper bounds series converges slowly

Quadtree gives both lower and upper bounds

Area of filled Julia sets after Milnor

224 APPENDIX A

This follows, since we can choose : [)) -+ U mapping the origin to
any given point of U, and since the Poincare metric at the center of [)) is
21d7]1. 0

As an example, if U is a half-plane, then the Poincare metric precisely
agrees with the (l/r)-metric Idzl/r.

-2 -1 0
Figure 45. Upper bounds for the area of the filled Julia
set for fc(z) = z2+ c in the range -2::; c :::; .25.

Concluding Problem

Problem A-I. Area of the filled Julia set. Consider the polynomial
map fc(z) == z2 + c. Let w = ¢(z) be the associated Bottcher map near
infinity, and let z = (w) be the inverse map. (1) In analogy with equation
(9 : 5), show that satisfies the identity

==
and conclude that has Laurent series of the form

'ljJ(w) = w(l + Pl(C)jw2 + P2(C)jw4 + P3(C)jw6 + ...),
where each Pk(c) is a polynomial of degree k with rational coefficients.
(2) Let K c be the filled Julia set for f c . Show that the area of K c is
upper semicontinuous* as a function of c. (3) If K; is connected, or in
other words if c belongs to the Mandelbrot * set, show by Lemma A.4 that

* Compare Lemma 11.15 for semicontinuity and Appendix G for the Mandelbrot set.

J.
M
il
n
or
,
D
yn

a
m
ic
s
in

o
n
e
co

m
p
le
x
va
ri
a
b
le

Area of filled Julia set −1.25 ≤ c ≤ 0.25

Area of filled Julia set −1.25 ≤ c ≤ 0.25 level 19

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

upper bound
lower bound

Area of filled Julia set −1.25 ≤ c ≤ 0.25 level 19

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

milnor
upper bound
lower bound

Area of filled Julia set −1.25 ≤ c ≤ 0.25 level 19

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

error

Limitations

I Memory

depth of quadtree and size of cell graph limited by available memory
currently spatial resolution ≈ 4× 10−6

cannot reach 20 levels

I Need to explore Ω ⊇ [−R,R]× [−R,R]

even if region of interest is smaller
limited amount of zoom
limitation inherent to using cell mapping because f is transitive on J

Limitations

I Memory
depth of quadtree and size of cell graph limited by available memory
currently spatial resolution ≈ 4× 10−6

cannot reach 20 levels

I Need to explore Ω ⊇ [−R,R]× [−R,R]
even if region of interest is smaller
limited amount of zoom
limitation inherent to using cell mapping because f is transitive on J

Future work higher-degree polynomials

I Escape radius

R =
1 + |ad |+ · · ·+ |a0|

|ad |

is an escape radius for f (z) = adz
d + · · ·+ a0 (Douady)

I Bounding box

needs interval arithmetic with directed rounding

Future work higher-degree polynomials

I Escape radius

R =
1 + |ad |+ · · ·+ |a0|

|ad |

is an escape radius for f (z) = adz
d + · · ·+ a0 (Douady)

I Bounding box

needs interval arithmetic with directed rounding

Cubic Julia set z3 + 0.38

Cubic Julia set z3 + 0.38

Cubic Julia set z3 + 0.41

Cubic Julia set z3 − 3a2 + b level 0

Cubic Julia set z3 − 3a2 + b level 1

Cubic Julia set z3 − 3a2 + b level 2

Cubic Julia set z3 − 3a2 + b level 3

Cubic Julia set z3 − 3a2 + b level 4

Cubic Julia set z3 − 3a2 + b level 5

Cubic Julia set z3 − 3a2 + b level 6

Cubic Julia set z3 − 3a2 + b level 7

Cubic Julia set z3 − 3a2 + b level 8

Cubic Julia set z3 − 3a2 + b level 9

Cubic Julia set z3 − 3a2 + b level 10

Cubic Julia set z3 − 3a2 + b level 11

Cubic Julia set z3 − 3a2 + b level 12

Cubic Julia set z3 − 3a2 + b level 13

Cubic Julia set z3 − 3a2 + b level 14

Cubic Julia set z3 − 3a2 + b

Cubic Julia set z3 − 3a2 + b

Future work Newton’s method

I Which points converge to which root? Cayley (1879)

I Points that do not converge form the Julia set

I No escape radius

I Need to find explicit attracting regions around roots?

Future work Newton’s method z3 = 1

Jo
a
ch

im
vo

n
zu

r
G
a
th
en

a
n
d
Jü

rg
en

G
er
h
ar
d

Julia set panorama

http://monge.visgraf.impa.br/panorama/viewer/index.html?

img=../julia-256GP/julia.xml

http://monge.visgraf.impa.br/panorama/viewer/index.html?img=../julia-256GP/julia.xml
http://monge.visgraf.impa.br/panorama/viewer/index.html?img=../julia-256GP/julia.xml

Images of Julia sets that you can trust

Thanks!

Related work

I M. Braverman and M. Yampolsky. Computability of Julia sets, volume 23 of
Algorithms and Computation in Mathematics. Springer-Verlag, 2009.

I M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation
of unstable manifolds and global attractors. Numerische Mathematik,
75(3):293–317, 1997.

I C. S. Hsu. Cell-to-cell mapping: A method of global analysis for nonlinear
systems. Springer-Verlag, 1987.

I J. Milnor. Dynamics in one complex variable, volume 160 of Annals of
Mathematics Studies. Princeton University Press, third edition, 2006.

I R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

I R. Rettinger and K. Weihrauch. The computational complexity of some
Julia sets. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, pages 177–185. ACM, 2003.

I D. Saupe. Efficient computation of Julia sets and their fractal dimension.
Phys. D, 28(3):358–370, 1987.

Area of filled Julia set −1.25 ≤ c ≤ 0.25 level 19

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

time

Interval arithmetic f (z) = z2 + c

(x , y) 7→ (x2 − y2 + a, 2xy + b)

function f(xmin,xmax,ymin,ymax)

local x2min,x2max=isqr(xmin,xmax)

local y2min,y2max=isqr(ymin,ymax)

local xymin,xymax=imul(xmin,xmax,ymin,ymax)

return x2min-y2max+a,x2max-y2min+a,2*xymin+b,2*xymax+b

end

function imul(xmin,xmax,ymin,ymax)

local mm=xmin*ymin

local mM=xmin*ymax

local Mm=xmax*ymin

local MM=xmax*ymax

local m,M=mm,mm

if m>mM then m=mM elseif M<mM then M=mM end

if m>Mm then m=Mm elseif M<Mm then M=Mm end

if m>MM then m=MM elseif M<MM then M=MM end

return m,M

end

Interval arithmetic f (z) = z2 + c

(x , y) 7→ (x2 − y2 + a, 2xy + b)

function f(xmin,xmax,ymin,ymax)

local x2min,x2max=isqr(xmin,xmax)

local y2min,y2max=isqr(ymin,ymax)

local xymin,xymax=imul(xmin,xmax,ymin,ymax)

return x2min-y2max+a,x2max-y2min+a,2*xymin+b,2*xymax+b

end

function isqr(xmin,xmax)

local u=xmin^2

local v=xmax^2

if xmin<=0 and 0<=xmax then

if u<v then return 0,v else return 0,u end

else

if u<v then return u,v else return v,u end

end

end

Interval arithmetic f (z) = z3 + c

(x , y) 7→ (x3 − 3xy2 + a,−y3 + 3x2y + b)

function f(xmin,xmax,ymin,ymax)

local x2min,x2max=isqr(xmin,xmax)

local y2min,y2max=isqr(ymin,ymax)

local xy2min,xy2max=imul(xmin,xmax,y2min,y2max)

local x2ymin,x2ymax=imul(x2min,x2max,ymin,ymax)

local x3min,x3max=icub(xmin,xmax)

local y3min,y3max=icub(ymin,ymax)

return x3min-3*xy2max+a, x3max-3*xy2min+a,

-y3max+3*x2ymin+b,-y3min+3*x2ymax+b

end

function icub(xmin,xmax)

return xmin^3,xmax^3

end

