

Images of Julia sets that you can trust

Luiz Henrique de Figueiredo

with

Can we trust this beautiful image?

Study the dynamics of
$$f(z)=z^2+c$$
 for $c\in\mathbb{C}$ fixed $z_1=f(z_0),\quad z_2=f(z_1),\quad \ldots,\quad z_n=f(z_{n-1})=f^n(z_0)$ What happens with the orbit of $z_0\in\mathbb{C}$ under f ?

unbounded orbitsbounded orbits

unbounded orbitsbounded orbits

attraction basin of ∞ filled Julia set

 $A(\infty)$ K

attraction basin of ∞ filled Julia set Julia set

A(∞) *K J*

Julia set zoo

Clelli Ligit

Julia set catalog: the Mandelbrot set

$$c \in \mathcal{M} := 0 \in K_c$$

Julia–Fatou dichotomy $c \in \mathcal{M} \Rightarrow J_c$ is connected $c \notin \mathcal{M} \Rightarrow J_c$ is a Cantor set

Julia set catalog: the Mandelbrot set

$$c \in \mathcal{M} := 0 \in K_c$$

Julia–Fatou dichotomy $c \in \mathcal{M} \Rightarrow J_c$ is connected $c \notin \mathcal{M} \Rightarrow J_c$ is a Cantor set

for
$$z_0$$
 in a grid of points in Ω
$$z \leftarrow z_0 \\ n \leftarrow 0 \\ \text{while } |z| \leq R \text{ and } n \leq N \text{ do} \\ z \leftarrow z^2 + c \\ n \leftarrow n + 1 \\ \text{paint } z_0 \text{ with color } n$$

Escape-time algorithm

for
$$z_0$$
 in a grid of points in Ω
$$z \leftarrow z_0 \\ n \leftarrow 0 \\ \text{while } |z| \leq R \text{ and } n \leq N \text{ do} \\ z \leftarrow z^2 + c \\ n \leftarrow n + 1 \\ \text{paint } z_0 \text{ with color } n$$

escape radius

$$R = \max(|c|, 2)$$
 $J \subset B(0, R)$

Escape radius

Lemma. If
$$z \in \mathbb{C}$$
 and $|z| > R = \max(|c|, 2) \Rightarrow |f^n(z)| \to \infty$ as $n \to \infty$.

Proof. The triangle inequality gives

$$|z^2| = |z^2 + c - c| \le |z^2 + c| + |c|$$

and so

$$|f(z)| = |z^2 + c| \ge |z^2| - |c| = |z|^2 - |c| > |z|^2 - |z| = |z|(|z| - 1) > |z| > R$$

Iterating, we get
$$|f^n(z)| > |z|(|z|-1)^n \to \infty$$
 because $|z|-1>1$.

Corollary. Every unbounded orbit escapes to ∞ .

$$A(\infty)$$

Escape-time algorithm

for
$$z_0$$
 in a grid of points in Ω
$$z \leftarrow z_0 \\ n \leftarrow 0 \\ \text{while } |z| \leq R \text{ and } n \leq N \text{ do} \\ z \leftarrow z^2 + c \\ n \leftarrow n + 1 \\ \text{paint } z_0 \text{ with color } n$$

escape radius

$$R = \max(|c|, 2)$$
 $J \subset B(0, R)$

for
$$z_0$$
 in a grid of points in Ω
$$z \leftarrow z_0$$

$$n \leftarrow 0$$
 while $|z| \leq R$ and $n \leq N$ do
$$z \leftarrow z^2 + c$$

$$n \leftarrow n + 1$$
 paint z_0 with color n

Spatial sampling need fine grid what happens between samples?

for
$$z_0$$
 in a grid of points in Ω
$$z \leftarrow z_0$$

$$n \leftarrow 0$$
 while $|z| \leq R$ and $n \leq N$ do
$$z \leftarrow z^2 + c$$

$$n \leftarrow n + 1$$
 paint z_0 with color n

► Spatial sampling

Partial orbits program cannot run forever

for
$$z_0$$
 in a grid of points in Ω
$$z \leftarrow z_0$$

$$n \leftarrow 0$$
 while $|z| \leq R$ and $n \leq N$ do
$$z \leftarrow z^2 + c$$

$$n \leftarrow n + 1$$
 paint z_0 with color n

► Spatial sampling

► Partial orbits

► Floating-point rounding errors squaring needs double digits

Escape-time algorithm

for z_0 in a grid of points in Ω $z \leftarrow z_0$ $n \leftarrow 0$ while $|z| \leq R$ and $n \leq N$ do $z \leftarrow z^2 + c$ $n \leftarrow n + 1$ paint z_0 with color n

➤ Spatial sampling

Compute color on grid points

Cannot be sure grid is fine enough

Cannot be sure behavior at sample points is typical

Finer grid ⇒ more detail

▶ Partial orbits
 Can only compute partial orbits
 Cannot be sure partial orbits are long enough
 Longer orbits ⇒ more detail

► Floating-point errors
 z² needs twice the number of digits that z needs
 Do rounding errors during iteration influence classification of points?
 Multiple-precision ⇒ more detail (deep zoom)

► No spatial sampling

► No orbits

► No floating-point errors

No spatial sampling Classify entire rectangles in the complex plane Spatial resolution limited by available memory Deeper quadtree ⇒ more detail

► No orbits

► No floating-point errors

- No spatial sampling Classify entire rectangles in the complex plane Spatial resolution limited by available memory Deeper quadtree ⇒ more detail
- No orbits
 Evaluate f once on each cell using interval arithmetic
 Perform no function iteration at all
 Use cell mapping and color propagation in graphs
- ► No floating-point errors

No spatial sampling Classify entire rectangles in the complex plane Spatial resolution limited by available memory Deeper quadtree ⇒ more detail

No orbits
 Evaluate f once on each cell using interval arithmetic
 Perform no function iteration at all
 Use cell mapping and color propagation in graphs

► No floating-point errors

All numbers are dyadic fractions with restricted range and precision

Use error-free fixed-point arithmetic

Precision depends only on spatial resolution

Standard double-precision floating-point enough for huge images

 $\begin{aligned} &\text{quadtree for} \\ &\Omega = [-R,R] {\times} [-R,R] \end{aligned}$

- white rectangles contained in $A(\infty)$
- black rectangles contained in K
- gray rectangles contain J

 $\begin{aligned} &\text{quadtree for} \\ &\Omega = [-R,R] {\times} [-R,R] \end{aligned}$

- white rectangles contained in $A(\infty)$
- black rectangles contained in K
- gray rectangles contain J

certified decomposition

 $\begin{aligned} &\text{quadtree for} \\ &\Omega = [-R,R] \times [-R,R] \end{aligned}$

refinement

cell mapping

color propagation

 $\begin{aligned} &\text{quadtree for} \\ &\Omega = [-R,R] \times [-R,R] \end{aligned}$

► refinement

► cell mapping

► color propagation

Our algorithm

 $\begin{aligned} &\text{quadtree for} \\ &\Omega = [-R,R] \times [-R,R] \end{aligned}$

refinement

► cell mapping

color propagation

Cell mapping

Directed graph on the leaves of the quadtree and exterior

- ► edges emanate from each leaf gray cell A
- ▶ add edge $A \rightarrow B$ for each leaf cell B that intersects f(A)

$$f(A)\subseteq\bigcup_{A\to B}B$$

Cell mapping

Directed graph on the leaves of the quadtree and exterior

- edges emanate from each leaf gray cell A
- ▶ add edge $A \rightarrow B$ for each leaf cell B that intersects f(A)

$$f(A)\subseteq\bigcup_{A\to B}B$$

Conservative estimate of the dynamics

Avoid point sampling

Cell mapping source cell leaf gray cell

Cell mapping

quadtree traversal

Our algorithm

quadtree for $\Omega = [-R, R] \times [-R, R]$

refinement

cell mapping

color propagation

Color propagation

Propagate white and black to gray cells

- new white cells gray cells for which all paths end in white cells
- new black cells gray cells for which no path ends in a white cell

Color propagation

Propagate white and black to gray cells

- new white cells gray cells for which all paths end in white cells
- new black cells gray cells for which no path ends in a white cell

Graph traversals replace function iteration

Avoid floating-point errors

Adaptive approximation examples

Adaptive approximation c = -0.12 + 0.60 i level 3

Adaptive approximation c = -0.12 + 0.60 i

Adaptive approximation c = -0.12 + 0.74i level 3

Adaptive approximation c = i level 6

Applications

► Image generation

► Point and box classification

► Fractal dimension of Julia set

► Area of filled Julia set

► Diameter of Julia set

- Image generation large images smaller images with anti-aliasing
- ► Point and box classification quadtree traversal + one function evaluation if gray
- Area of filled Julia set (Milnor) lower and upper bounds $\pi(1-|p_1(c)|^2-3|p_2(c)|^2-5|p_3(c)|^2-\cdots)$
- ▶ Diameter of Julia set lower and upper bounds

Area of filled Julia sets after Milnor

Inverse Böttcher map
$$\psi \colon \mathbb{C} \setminus \mathbb{D} \to \mathbb{C} \setminus K$$

$$\psi(w^2) = \psi(w)^2 + c$$

Laurent series near ∞

$$\psi(w) = w \left(1 + \frac{a_2}{w^2} + \frac{a_4}{w^4} + \frac{a_6}{w^6} + \cdots \right)$$

$$a_2 = -\frac{c}{2}$$
 $a_{2n} = \frac{1}{2}(a_n - a_n^2) - \sum_{\substack{2 \le j < n \ j \text{ even}}} a_j a_{2n-j}$ $a_{2n+1} = 0$

Gronwall's area theorem

$$area(K) = \pi(1 - |a_2|^2 - 3|a_4|^2 - 5|a_6|^2 - \cdots)$$

Truncating series gives upper bounds

Quadtree gives both lower and upper bounds

series converges slowly

Area of filled Julia sets after Milnor

Figure 45. Upper bounds for the area of the filled Julia set for $f_c(z)=z^2+c$ in the range $-2 \le c \le .25$.

Area of filled Julia set $-1.25 \le c \le 0.25$

Area of filled Julia set $-1.25 \le c \le 0.25$ level 19

Area of filled Julia set $-1.25 \le c \le 0.25$ level 19

Area of filled Julia set $-1.25 \le c \le 0.25$ level 19

Limitations

► Memory

▶ Need to explore $\Omega \supseteq [-R, R] \times [-R, R]$

Limitations

▶ Memory depth of quadtree and size of cell graph limited by available memory currently spatial resolution $\approx 4 \times 10^{-6}$ cannot reach 20 levels

Need to explore $\Omega \supseteq [-R,R] \times [-R,R]$ even if region of interest is smaller limited amount of zoom limitation inherent to using cell mapping because f is transitive on J

Future work higher-degree polynomials

► Escape radius

► Bounding box

► Escape radius

$$R = \frac{1 + |a_d| + \dots + |a_0|}{|a_d|}$$

is an escape radius for $f(z) = a_d z^d + \cdots + a_0$

(Douady)

► Bounding box needs interval arithmetic with directed rounding Cubic Julia set $z^3 + 0.38$

Cubic Julia set $z^3 - 3a^2 + b$

Future work Newton's method

▶ Which points converge to which root?

Cayley (1879)

▶ Points that do not converge form the Julia set

► No escape radius

► Need to find explicit attracting regions around roots?

Julia set panorama

```
http://monge.visgraf.impa.br/panorama/viewer/index.html?img=../julia-256GP/julia.xml
```

Images of Julia sets that you can trust

Related work

- ▶ M. Braverman and M. Yampolsky. *Computability of Julia sets*, volume 23 of *Algorithms and Computation in Mathematics*. Springer-Verlag, 2009.
- M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. *Numerische Mathematik*, 75(3):293–317, 1997.
- ► C. S. Hsu. Cell-to-cell mapping: A method of global analysis for nonlinear systems. Springer-Verlag, 1987.
- ▶ J. Milnor. *Dynamics in one complex variable*, volume 160 of *Annals of Mathematics Studies*. Princeton University Press, third edition, 2006.
- ▶ R. E. Moore. *Interval Analysis*. Prentice-Hall, 1966.
- ▶ R. Rettinger and K. Weihrauch. The computational complexity of some Julia sets. In *Proceedings of the 35th Annual ACM Symposium on Theory of Computing*, pages 177–185. ACM, 2003.
- ▶ D. Saupe. Efficient computation of Julia sets and their fractal dimension. *Phys. D*, 28(3):358–370, 1987.

Area of filled Julia set $-1.25 \le c \le 0.25$ level 19


```
Interval arithmetic
```

end

function f(xmin,xmax,ymin,ymax)

$$f(z) = z^2 + c$$

return x2min-y2max+a,x2max-y2min+a,2*xymin+b,2*xymax+b

$$(x,y) \mapsto (x^2 - y^2 + a, 2xy + b)$$

```
function imul(xmin,xmax,ymin,ymax)
        local mm=xmin*ymin
        local mM=xmin*ymax
        local Mm=xmax*ymin
        local MM=xmax*ymax
        local m, M=mm, mm
        if m>mM then m=mM elseif M<mM then M=mM end
        if m>Mm then m=Mm elseif M<Mm then M=Mm end
        if m>MM then m=MM elseif M<MM then M=MM end
        return m.M
end
```

local x2min,x2max=isqr(xmin,xmax)
local y2min,y2max=isqr(ymin,ymax)

local xymin,xymax=imul(xmin,xmax,ymin,ymax)

```
Interval arithmetic
```

end

$$f(z) = z^2 + c$$

 $(x,y) \mapsto (x^2 - y^2 + a, 2xy + b)$

```
function f(xmin,xmax,ymin,ymax)
        local x2min,x2max=isqr(xmin,xmax)
        local y2min,y2max=isqr(ymin,ymax)
        local xymin,xymax=imul(xmin,xmax,ymin,ymax)
        return x2min-y2max+a,x2max-y2min+a,2*xymin+b,2*xymax+b
end
function isqr(xmin,xmax)
        local u=xmin^2
        local v=xmax^2
        if xmin<=0 and 0<=xmax then
                if u<v then return 0,v else return 0,u end
        else
                if u<v then return u,v else return v,u end
        end
```

Interval arithmetic

$$f(z) = z^3 + c$$

$$(x,y) \mapsto (x^3 - 3xy^2 + a, -y^3 + 3x^2y + b)$$

end